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ABSTRACT
Immersive Analytics is a quickly evolving field that unites several
areas such as visualisation, immersive environments, and human-
computer interaction to support human data analysis with emerging
technologies. This research has thrived over the past years with
multiple workshops, seminars, and a growing body of publications,
spanning several conferences. Given the rapid advancement of
interaction technologies and novel application domains, this pa-
per aims toward a broader research agenda to enable widespread
adoption. We present 17 key research challenges developed over
multiple sessions by a diverse group of 24 international experts,
initiated from a virtual scientific workshop at ACMCHI 2020. These
challenges aim to coordinate future work by providing a systematic
roadmap of current directions and impending hurdles to facilitate
productive and effective applications for Immersive Analytics.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; Visualization systems and tools; Virtual reality;Mixed
/ augmented reality.

KEYWORDS
Immersive analytics, grand research challenges, data visualisation,
augmented reality, virtual reality
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1 INTRODUCTION
An immersive system is one whose technology allows us to “step
through the glass” [126] of a computer display to engage in a vis-
ceral experience of interaction with digitally-created elements. As
immersive technologies have rapidly matured to bring commer-
cially successful virtual and augmented reality (VR/AR) devices
and mass market applications, researchers have sought to leverage
its benefits, such as enhanced sensory perception and embodied
interaction [34], to aid human data understanding and sensemaking.
This aspiration has brought together researchers from data visuali-
sation, human-computer interaction (HCI), computer graphics, and
virtual reality to create a new field known as Immersive Analytics.

Since its definition half a decade ago [20], Immersive Analytics
has exploded into a rapidly growing body of research on novel in-
teraction techniques, toolkits and applications. There have been nu-
merous scientific community-building and knowledge-dissemination
activities includingworkshops, seminars, a textbook, journal special
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issues, and an extensive survey. Recent qualitative and quantita-
tive studies have begun to show concrete evidence of the tangible
benefits of immersive systems as well as growing evidence-based
guidelines for immersive visualisation design. As the field contin-
ues to grow and bridge to related fields, such as interaction design,
psychology, machine learning, or computer vision, it becomes im-
portant to develop a unified research agenda to facilitate a shift
towards enabling productive and effective applications.

In this paper, we describe a set of 17 challenges, grouped into 4
topics: Spatially Situated Data Visualisation, Collaborative Analytics,
Interacting with Immersive Analytics Systems, and User Scenarios
& Evaluation. These 17 new challenges complement previously
suggested goals for Immersive Analytics as reviewed in Section
2, but are derived from the most pressing concerns for immersive
analytics systems to succeed productively in the wild. This paper
takes a community-focused approach, sourcing its set of challenges
from a wide range of disciplines and expertise. Our challenges
were defined through collective discussion involving 24 experts in
the domains of visualisation, virtual and augmented reality, and
HCI. Following a structured workshop with 3 sessions and a 3-
month collaboration, we converged towards the final 17 challenges
(Table 1). Similar to other compilations of grand challenges in HCI,
such as recent works on shape changing interfaces [2] and human-
computer integration [95], our survey aims to bring the growing
community together, to inform common research goals, to help
onboard researchers new to Immersive Analytics, and to provide
a coherent view to outside stakeholders such as companies and
funding agencies.

The remainder of this paper is structured as follows: Section 2
reports the history of Immersive Analytics and the most recent
developments from the past 3 years (2018-2020) to provide an up-to-
date overview of the state-of-the-art. Section 3 details our workshop
methodology. Sections 4-7 each cover one of our 4 challenge topics
and Section 8 finishes the paper with discussion and reflection.

2 THE EVOLUTION OF IMMERSIVE
ANALYTICS

This section surveys various efforts from a number of different
fields in HCI, data visualisation and visual analytics as well as VR
and computer graphics, to create a firm basis and definition for the
emerging field of Immersive Analytics. We review this evolution
and then focus on recent results which demonstrate the promise of
the field.

2.1 Mapping a New Domain
Various recent efforts have aimed to structure the domain of Im-
mersive Analytics, to define challenges and research goals as well
as to build a global community of researchers from different fields.
Such efforts include:

• Definitions: Several authors have proposed definitions about
what Immersive Analytics is and what it aims to achieve.
In 2015, Chandler et al. [20] explain the goal of Immersive
Analytics as to “explore the applicability and development
of emerging user-interface technologies for creating more en-
gaging and immersive experiences and seamless workflows
for data analysis applications”. Later, Marriott et al. [89] add
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that Immersive Analytics aims to “support data understand-
ing and decision making”. Alternatively, Hackathorn and
Margolis [59] emphasise collaboration in their definition “to
enhance collaborative decision support”. A more recent ap-
proach by Skarbez et al.[125] describes Immersive Analytics
as “the science of analytical reasoning facilitated by immersive
human-computer interfaces”, situating it with respect to the
knowledge generation loop [106].

• Survey: Over the past years, the field has produced an in-
creasing number of publications, extensively summarised in
a 2019 survey [51]. Many papers describing and evaluating
techniques for visualisation and interaction, evaluating per-
ception or enabling collaboration, have been accompanied
and enabled by a series of seminars and workshops.

• Conference Workshops: A series of followup workshops
were conducted, hosted inmajor visualisation andHCI venues
(ACM ISS 2016 [7], IEEE VIS 2018 [5], CHI 2019 [6] and CHI
2020 [45]). These events focused on topics such as 3D visuali-
sation, perception, interaction, collaboration and evaluation.

• Scientific Seminars: The first workshop to involve data
visualisation and VR/AR research was organised by Mar-
riott et al. at Shonan in 2015 1. 2016 then saw a Dagstuhl
Seminar [35] involving around 40 researchers and practition-
ers from data visualisation, VR, and HCI. Another Shonan
seminar was held in 2018 2.

• Textbook: The main outcome of the Dagstuhl seminar was
the writing of the book Immersive Analytics [89]. The book
contains chapters on topics such as collaboration, 3D percep-
tion, storytelling, and multi-modality. However, the book,
being a relatively early foray into the field, primarily dis-
cusses opportunities, rather than challenges.

• Scientific Tutorials and Courses: An Immersive Analyt-
ics Toolkit course was held at IEEE BDVA 2018 3 and IEEE
VIS 2018 4. Two similar courses were held at Siggraph Asia
2019 [42] and ACM ISS 2019 [28].

• Special issue: 2019 saw a Special Issue on Immersive Ana-
lytics of IEEE Computer Graphics & Applications [43], with
articles reflecting on 20 years of evolution of CAVE and
immersive analytics systems [87].

• Recent challenges: In 2019, Skarbez et al. [125] define 5
challenges for Immersive Analytics based on use cases by
the authors. We include 2 of these challenges Combining
Human and Computer Intelligence and Changing the Process
of Analysis with Immersion in our list of Grand Challenges in
Table 1. The other 3 we feel are encompassed and extended
by our more granular list.

2.2 State-of-the-Art in Immersive Analytics
Empirical Studies:While there are well-known limitations to dis-
laying data in 3D on 2D screens (see [96, Chap. 6]), immersive
environments potentially offer a better medium for both 3D data

1https://shonan.nii.ac.jp/seminars/074
2https://shonan.nii.ac.jp/seminars/131/
3https://bdva.net/2018/index.php/introduction-to-iatk-an-immersive-visual-
analytics-toolkit/
4http://ieeevis.org/year/2018/info/tutorials#IATK

display (through the use of head-tracked stereo, immersive naviga-
tion and natural interaction) and for 2D data display (by virtue of
arbitrarily large 2D surfaces within an open interaction space). As
discussed by Marriott et al. [89], the trade-offs of displaying data in
immersive environments are not fully understood. They therefore
called for studies to explore these principles and, in recent years,
important new results on this matter have been published.

Kraus et al. [75] found that multi-dimensional clusters are easier
to identify in VR than in a 2D desktop display, where dimensions
must be split across a small-multiples view. Yang et al. [144] found
that 3D globes are more effective for conveying distance and direc-
tion on world maps than 2D projections. Thus, there appears to be
tangible benefit to immersive display when the data is inherently
more than two-dimensional. Another study of immersive map visu-
alisation by Yang et al. [143] found that immersive environments
enable seamless transitions between 2D views that are optimal
for visualising different aspects of the data. There have also been
promising results in designing immersive visualisations for entirely
abstract data, such as graphs or networks. Kwon et al. [76] found
that immersive VR graph layouts allow faster decisions and fewer
errors compared to their 2D counterparts.

A recent study investigated how larger groups collaboratively
make sense of data in VR, especially focusing on 3D space use [79].
They found that users were able to perform sophisticated analysis in
the environment, were comfortable collaborating via 3D visualisa-
tions, and were able to structure their virtual workspace to support
collaboration. Another recent qualitative study by Lee et al. [78]
found that immersive visualisations provide a visceral experience
to engage users in data stories. A preliminary expert study by Batch
et al. [10] found that analysts made more use of 3D space when
presenting their data visualisations in immersive environments and
used less space when creating and designing visualisations. The
notion of space, distances, and spatial understanding has also been
studied elsewhere [30, 70, 129].

Study results are now being distilled into design recommenda-
tions for immersive visualisations, some of these quite pragmatic,
with a focus on working around technology limitations—especially
in AR. Bach et al. [8] found limitations in the contemporary technol-
ogy (Microsoft Hololens V1) highlighting limitations in the field of
view, resolution, stabilisation, and training requirements. Analysing
the perception of visual variables (size, color, etc.) across VR, Desk-
top and AR environments, Whitlock et al. [138] offer guidelines
for the use of visual variables in immersive environments. Yang
et al. [141] derive guidelines for scalable navigation in immersive
environments, exploring immersive equivalents of overview+detail
and zooming as commonly used in desktop visualisation. They find
that world-in-miniature and 3D zooming are complementary to
physical navigation in immersive environments, but that they intro-
duce overhead by requiring context switching between views. The
results offer a nuanced time-cost model to predict for what tasks
each navigation method will benefit.

Studying different layouts in 2D and 3D for small multiples data
visualisation in immersive environments, Liu et al. [86] find trade-
offs between the real estate offered by full wrap-around displays
and problems caused by some information being behind and out of
view of the user. Aside from visual perception, common immersive
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Figure 1: Illustration of several recent Immersive Analytics systems: (1) Corsican Twin [109], (2) the Embodied Axes [24]
controller for precise interaction with 3D visualisations in AR, (3) AR personal navigation of networks on wall-size displays
[72], (4) the UpLift system [46] mixes AR, a touch table and tracked tangibles for building energy analytics (image ©IEEE), (5)
the FIESTA system for collaborative immersive analytics in VR [79], (6) a study of small-multiples in VR [86], (7) the Tilt Map
[143] system for 3D Choropleth maps visualisation (image ©IEEE), (8) a multi-scale navigation system for map navigation in
AR [114], (9) bare hand interactions [115] to navigate AR maps, and (10) immersive unit visualisation [71].

display technologies offer additional channels for data communica-
tion. For example, vibrotactile feedback provides an efficient means
to convey internal cluster structures in 3D scatterplots of varying
size [108].

In general, these promising results are beginning to evolve into
guidelines for immersive data visualisation design, but there re-
mains much further work before principles for Immersive Analytics
are as evolved as those for traditional and well-studied 2D data vi-
sualisations.

InteractionTechniques:One of the often reportedmotivations
for Immersive Analytics is the promise to perform embodied direct
manipulation. For example, ImAxes [27] uses embodied interaction
to assemble visualisations from the direct manipulation of 3D axes
of data dimensions in 3D space. UpLift [46] uses tangibles on a
touch table and the HoloLens to visualise and understand building
energy on campuses. Filhio et al. [48] also built an embodied 3D
visualisation of a space-time cube which uses embodied interaction
to rotate, scale and query the visualisation. Controller-less tech-
niques are also currently being investigated, including panning and
zooming AR maps [115] or VR 3D graph node selections [67].

A known drawback of such manual interaction is that it can
lead to fatigue, inducing the so-called “gorilla arm” effect. Recent

work investigates how tangible interaction can help counterbal-
ance issues of fatigue due to 3D interaction in mid-air with VR
controllers [25]. Filhio et al. [132] combined the tangibility of a
physical desk tabletop with an immersive 3D scatterplot to make
it suitable for extensive periods of data analysis and found that
their setup was comparable to a traditional desktop setup. Cordeil
et al. [24] built Embodied Axes, a 3D tangible controller that helps
users perform more precise 3D selections in immersive 3D visual-
isations compared to traditional 6DOF mid-air controllers. These
works establish preliminary steps towards making immersive envi-
ronments more efficient and integrated into the user’s workspace
for data visualisation, but more work needs to be done to bridge the
performance gap between immersive techniques and traditional
interfaces.

Specific Application Areas: Many Immersive Analytics ap-
plications explore problems in specific domains, including tele-
medicine [124], factory settings [109], IoT [13, 44], or geographic
visualisation. Geographic visualisation includes techniques for map
navigation [115], multi-scale navigation [114], space-time cubes [48],
different representations of global geography [144], flowmaps [142],
and choropleth maps [143]. Many of these applications involve
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situating data in the real environment, an area termed situated ana-
lytics [40], which has resulted in a design space for embedded data
representations [140] and respective systems [109].

Design, Authoring & Toolkits:While most current research
in Immersive Analytics focuses on exploratory and analytical in-
terfaces, recent work has deployed design spaces and systems to
inform authoring immersive environments beyond low-level pro-
gramming in Unity, Unreal Engine, and AR-Toolkit. Conceptual de-
sign spaces have been proposed for developing devices and interac-
tion techniques [25] and visualisations in AR [9]. DXR (2018) [123],
Niwviw (2018) [145], IATK (2019) [26], VRIA (2020) [15], and U2Vis
(2020) [111] are early general-purpose programming toolkits based
on Unity (DXR, IATK) and web-technology (VRIA), providing pre-
defined visualisation and glyphs, declarative programming, and
previews for rapid prototyping, debugging, and customisation.

Whitlock et al. [139] provide FieldView, an open-source toolkit
for immersive mobile application in the field with conditions dif-
ferent from lab settings such as low connectivity and screenspace.
Similarly, Prouzeau et al. [109] present Corsican Twin, a tool for
spatially embedded applications in industrial settings. No program-
ming is required for systems such asMARVisT [21] to author glyphs
in mixed reality and PapARVis Designer [22] to amend existing
visualisations in the real world with holographic visual elements
and extensions.

Collaboration: Supporting multiple users for sensemaking is
one of the fundamental aspects of Immersive Analytics research [12].
Previous work investigated how users perform 3D network analy-
ses in VR [29, 31]. Other work has also focused on group work in
AR [119], including work with tangible touch tables [16]. This work
allows researchers to better understand group dynamic in different
data scenarios, and has served as validation of the effective use of
immersive platforms for groups to work together.

Commercial Products and Platforms:Major tech companies
such as Microsoft, Facebook, and HTC have been leading the de-
velopment of immersive head-mounted displays. While many com-
panies provide platforms for applications, there is no viable data
visualisation software available from those companies. At the same
time, startup companies have started commercialising immersive
data visualisation applications, and few companies sell usable prod-
ucts. For example, Virtualitics 5 develops a desktop tool to build a
visualisation that can then be viewed collaboratively in VR. Alaira6
developes a wider set of visualisations that include graphs and 3D
maps. However, naturally, it is challenging for these companies
to adapt the most recent research and most advanced visual an-
alytics techniques that can be found in commecial applications
like Tableau 7. Moreover, many techniques from research require
additional work to be of commercial value and appeal to a large
audience. Another likely challenge is onboarding novel users onto
immersive applications, even if immersive hardware becomes in-
creasingly affordable.

While this recent work has enumerated the promise of Immer-
sive Analytics, it also sheds light on several potential challenges
for successfully deploying Immersive Analytics tools into broader
use contexts. We aim to enumerate these challenges to provide a
5https://www.virtualitics.com/
6https://www.alaira.co.uk/
7https://www.tableau.com/

unified roadmap for innovation in Immersive Analytics.

3 METHODOLOGY
We elicited 17 grand challenges for Immersive Analytics in a col-
laborative workshop at CHI 2020 followed by multiple work ses-
sions with international experts focusing on the four core themes
emerging from the workshop discussions: Spatially Situated Data
Visualisation, Interacting with Immersive Analytics Systems, Col-
laborative Analytics, and User Scenarios and Evaluation.

3.1 Participants
Our preliminary workshops involved 28 international experts, out
of which 24 joined to write this paper, with a combined exper-
tise spanning over multiple areas: 3D interaction, accessibility, AR,
cognitive science, collaboration, command selection, computer vi-
sion data visualisation, education, HCI, Immersive Analytics, input
devices, interaction design, mathematics, mobile and wearable com-
puting, multimodal interaction, perception, physics, qualitative
methods, quantitative methods, shape changing interfaces, situated
visualisation, spatial interaction, spatial UIs, storytelling, tangible
UIs, ubiquitous computing, VR, and visual analytics. Participants
came from around the globe (Europe: 7, North America: 19, Asia: 1,
Oceania: 4). Most participants submitted a position paper to take
part in the workshops, and all others have substantial experience
in the Immersive Analytics field.

3.2 Workshops Organisation
The process started with a multiple-day workshop, conducted virtu-
ally through Zoom due to the COVID-19 pandemic (Figure 2). The
workshop spanned 2 weeks and included 4 sessions: one opening
session, 2 asynchronous sessions, and a closing session.

Prior to the workshop, organisers identified six relevant themes
for discussion (Defining Productivity, Interaction Techniques, Col-
laborative Analysis, Users & Scenarios, Situated & Spatial Analytics,
and Evaluation). Workshop participants were encouraged to con-
tribute additional themes. Two of these themes were later combined
(Users & Scenarios and Evaluation) and one was discarded (Defining
Productivity). For the opening session (2 hours), each participant
was asked to give a two-minute presentation using 2-3 slides that
introduced themselves and any relevant work they would like to
share. Then we conducted two asynchronous sessions (3 hours
each) using a World Café [102] process to create subgroups and dis-
cuss these topics. The closing session (2 hours) was used to report
and comment on notes from each subgroup.

After this initial workshop, we organised four sub-groups, cor-
responding to the 4 thematic areas, to carry out ideation and gen-
erative design sessions, with the goal of coming up with a set of
3-4 grand challenges for each thematic area. Note that most partic-
ipants took part in various sub-groups, and that each sub-group
included two organisers, who also attended other sub-groups, to
ensure that the discussions among groups were not overlapping.
Each subgroup met at least 3 times during this part of the process,
which spanned 1-2 months. We summarise the resulting challenges
derived by these meetings in the ensuing sections.
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Figure 2: The grand challenges process was initiated with a
CHI 2020 workshop, followed by a series of sessions held
over 2 months.

Topics Challenges
SPATIALLY SITUATED
DATA VISUALISATION

C1 Placing Visualisations Accurately in
Space

C2 Extracting and Representing Semantic
Knowledge

C3 Designing Guidelines for Spatially Sit-
uated Visualisation

C4 Understanding Human Senses and
Cognition in Situated Contexts

C5 Applying Spatial Visualisation Ethi-
cally

INTERACTING WITH
IMMERSIVE ANALYT-
ICS SYSTEMS

C6 Exploiting Human Senses for Interac-
tive Immersive Analytics

C7 Enabling Multi-Sensory Feedback for
Immersive Analytics

C8 Supporting Transitions around Immer-
sive Environments

C9 Coping with Immersive Analytics In-
teraction Complexity

COLLABORATIVE AN-
ALYTICS

C10 Supporting Behaviour with Collabora-
tors

C11 Overcoming Constraints of Reality
C12 Supporting Cross Platform Collabora-

tion
C13 Integrating Current Collaboration

Practice
C14 Assessing Collaborative Work

USER SCENARIOS
AND EVALUATION

C15 Defining Application Scenarios for Im-
mersive Analytics

C16 Understanding Users and Contexts for
Evaluation of Immersive Analytics

C17 Establishing an Evaluation Framework
for Immersive Analytics

COMPLEMENTARY
CHALLENGES

C18 Combining Human and Computer In-
telligence

(included from [125]) C19 Changing the Process of Analysis with
Immersion

Table 1: Grand Challenges Overview. Complementary chal-
lenges are discussed elsewhere [125].

4 SPATIALLY SITUATED DATA
VISUALISATION

Avery appealing aspect of immersive analytics is usingwearable AR
displays to visualise data within the world around us. By overlaying
a visual representation on an object or location associated with the
data’s source, known as a referent [140], users may be made aware
of useful spatial relationships in a data set—all while keeping their

Spatially Situated Visualisation Continuum

Degree of integration with physical referents

Su
pp

or
t f

or
 sp

at
ia

l i
nt

er
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Embedded Data 
Representation

Situated 
Analytics

Ubiquitous 
Analytics

Spatial 
Analytic 
Interfaces

Visual 
Analytics

Immersive 
Analytics

Figure 3: Various approaches can be coarsely placed on the
spatially situated data visualisation continuum, by the de-
gree to which they spatially integrate data encodings with
physical referents, and by their support for spatial interac-
tion.

hands free during industrial work or other mobile tasks. However,
the degree of integration between a data representation and referent
can vary over a wide spectrum, many instances of which have been
described in prior literature.

The concept of viewing information electronically in relevant
spatial locations can be traced back to Fitzmaurice [49], who coined
the term Spatially Situated Information Spaces. Their use of ‘palm-
top’ computers was influenced by the contemporaneous concept
of Ubiquitous Computing [137], which envisioned a shift toward
computing activities blended into our daily activities. More recently,
Irani and Elmqvist [37] introducedUbiquitous Analytics, which links
Ubiquitous Computing and Visual Analytics to conduct data ana-
lytics “in the wild” with available mobile technologies. A stronger
link to Fitzmaurice’s ideas was drawn by Ens et al. [47] with Spatial
Analytic Interfaces, which discussed how wearable AR and spatial
interaction could be applied to support in-situ analytic tasks by
registering information with the surrounding environment. Around
the same time, ElSayed et al. [41] coined term Situated Analytics
to express the spatial integration of data representations with a
meaningful spatial referent. Willett et al. [140] make the difference
between ubiquitous analytics and situated analytics more explicit:
They distinguish situated data representations, which are located
near their physical referent, from embedded ones, which are more
tightly integrated with the referent.

Several challenges result from the practical application of these
various approaches (Fig.3), from the differences of design implica-
tions between them, and from how they affect our relationships
with physical space.

C1: Placing Visualisations Accurately in Space
Placing a digital visualisation at a desired position in the physi-
cal world is fundamental to spatially situated visualisation. While
this kind of physical registration is often trivial when situating
screen-based or physical data representations, it represents a seri-
ous challenge for immersive AR tools. Stable spatial registration
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is essential since virtual objects should stay in the same position
and orientation unless they are intentionally manipulated [116]. To
achieve a stable spatial registration, an AR device (either an HMD
or a mobile device) has to know its 3D position and rotation in the
environment, and the spatial relationship between itself, the virtual
objects and the physical surroundings.

Major AR platforms all have their own implementations of spatial
registration, includingMicrosoft’s HoloLens [94], Apple’s ARKit [3],
and Google’s ARCore [55]. Existing platforms focus on using com-
puter vision to build a map of the surrounding environment and
locate the device and virtual objects within the environment using
simultaneous localisation and mapping (SLAM). However, there are
still several unsolved problems with this approach for immersive
analytics.

First, many applications only consider scenes at room-scale. How-
ever, there are cases where much larger scales of spatial information
are required. For example, Pokémon GO [97] utilises the whole
world as its virtual space; Google Map AR uses virtual indicators to
help users navigate. More and more applications require reference
data at a large scale. In these applications, GPS data can provide
coarse spatial information, but it is not precise enough to provide a
stable spatial registration. A mechanism such as the one of Arth
et al. [4] is needed that can take advantage of GPS data at a larger
spatial scale as well as precise computer vision and other sensor
data. Recent ultra-precise GPS methods allow sub-centimeter loca-
tion accuracy, while indoor environments may take advantage of
recent Ultra-Wideband hardware.

Second, we need to know not only the position of the viewer,
but also spatial properties of the referents. Most existing solutions
compute the spatial information on the fly. We can potentially get
more accurate data from existing sources, such as floor plans and
building information modelling (BIM) [109], but these data sources
usually lack details that could be obtained from computer vision,
such as damage from recent disasters or positions of transient
objects like people or furnishings. In some cases, only existing
spatial data sources are available. For example, a designer may
remotely arrange the furniture for homes that she has not visited.
A mechanism is needed to optimise data availability and quality
from various data sources.

C2: Extracting and Representing Semantic
Knowledge
Placing data representations with precision relative to referents
requires the ability to recognise and track relevant objects. In ad-
dition, automating the behaviour of data visualisations, providing
context-aware behaviour, and automating layouts requires scene un-
derstanding [1, 83]—the ability to understand objects in the context
of their surroundings, including dynamic behaviours and functional
relationships.

While research in this area is ongoing, situated visualisation
faces further challenges, for instance, providing robust input from
existing wearable sensors to provide context awareness [60]. More-
over, the display of information based on spatial understanding
must be presented with accurate spatial registration to be useful in
practice.

Providing designers with the ability to easily author data visu-
alisations will further require the ability to represent and store
complex semantic information at a human-understandable level.
In the past decade of evolution of online information systems, 2
approaches have prevailed. Hand-crafted ontologies [99] work for
highly structures domains, such as engineering or law. Less struc-
tured domains, such as traffic management, social computing, or
entertainment, are better served by mining big data collections
with Bayesian statistics to extract common patterns. In either case,
these approaches can be applied to situated analytics as well, given
that they can be considered online information systems with added
contextual from the physical locations of users and referents. How-
ever, securing and correctly classifying such context in a (typically
mobile and resource-constrained) setting is inherently challenging.

C3: Designing Guidelines for Spatially Situated
Visualisation
Much of the prior work in situated visualisation is motivated by the
assumption that increasing the degree of real-virtual integration
will increase the user’s ability to understand data or make better
decisions. For example, one might assume that an embedded vi-
sualisation that overlays colour-coded data directly on a referent
object (e.g., price data overlaid on the shelf holding a product or
temperature of a boiler on the exterior of a water tank) provides a
more intuitive visualisation than a traditional 2D chart situated next
to an object. Either of these options would, in turn, be preferable
to a visualisation viewed on the screen of a tablet while standing
next to the object. However, there are too few controlled studies
on the relative benefits of spatially situated visualisations to truly
understand these distinctions.

When deciding how tightly to integrate data encodings, wemight
assume there is an inherent tradeoff between intuitiveness, lead-
ing to immediacy of understanding, and degree of ‘information
bandwidth’ [136], which may impact the potential scope of under-
standing. For instance, layering many visualisations on or around
equipment in a physical plant may make valuable information im-
mediately available, but visual encodings may be limited to those
that facilitate preattentive visual processing [61]. In contrast, a sit-
uated visualisation abstracted from the physical form may be able
to include additional dimensions, such as temporal data [109], but
may be slower to process cognitively.

It is important to understand how different representations im-
pact users’ ability to discern information from the physical sur-
roundings. Currently, many research questions in this area remain
unanswered. How do we determine the relative importance of ob-
jects in the physical world to know what should not be occluded?
When dealing with multiple related visualisations, what is the op-
timal layout to support a user’s tasks? These issues become ex-
ponentially more complex when we consider dynamic real-world
environments, which constantly change, contain moving people,
or expose dangerous equipment. Additional complicating factors
include variation in user 3D perception capabilities and known
hardware limitations such as vergence-accommodation conflict that
may introduce variations in where people perceive data relative
to the physical space. Dedicated studies are needed to understand
the implications of placing visualisations in users’ environments.
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With better understanding, we will be able to produce a detailed
set of guidelines for designing such visualisations under a complex
array of different tasks and circumstances. This may also require
developing robust evaluation methods for data representations and
automatically generated layouts.

C4: Understanding Human Perception and
Cognition in Situated Contexts
Effectively distributing data visualisations in our physical environ-
ments will first require us to gain a better understanding of how
the human analyst perceives, interprets, and processes information.
In particular, there needs to be substantial study of how analysts
interact with data in spatial tasks and contexts. While there has
been a great deal of study of cognitive processes during interaction
with desktop interfaces [17, 101, 122], there has yet been little direct
study of interaction with AR, particularly with data visualisation
and analysis tasks. It is important to understand how the added
spatial context affects a user’s ability to interpret information. For
instance, what are the specific cognitive benefits of a spatial associ-
ation between data and a physical referent? How are such benefits
impaired by ever-present real-world distractions in dynamic set-
tings? What are the costs of processing information across both
digital displays and physical objects [36, 53]? Can we leverage hu-
man abilities for efficient visual processing [136] (perhaps through
embedded visualisations) and distributed cognition [65] (by dis-
tributing cognitive aids in strategic physical locations)? How can
different strategies for integrating information with the physical
environment be used to reduce working memory and cognitive
load? What are the limitations of human attention, and how do we
avoid exceeding these when adding sensory stimulus into dynamic
environments?

C5: Applying Spatial Visualisation Ethically
Concerns over tracking and collecting personal user data, such
as shopping history, information browsing habits, device usage,
and physical location are already prevalent with current smart-
phone devices [73]. These concerns have potential to become much
more substantial with immersive devices, which may provide access
to more detailed data about our activities, such as specific head
pose, eye gaze, and indoor location. In the future, VR displays may
contain additional physiological sensors, such as EMG, EEG, GSV,
etc., which reveal our responses to stimuli and even our thoughts.
Some of this physiological information is already captured by smart
watches, and the Amazon Halo went further by detecting emotions
using the tone of voice [112].

This increased access to intimate information has raised con-
cerns. For instance, many VR users reject the recent decision by
Facebook to require users to sign inwhen usingOculus devices [112].
When considering data analytics, such concerns must be addressed
to alleviate ethical and proprietary concerns over access to sensitive
data by providing a pipeline that does not expose data to collection.
Situated visualisation has the potential to expose sensitive relation-
ships between data and referent objects or specific locations. These
issues could be alleviated by the development of system software
that prevent detailed data needed for device functionality from
being passed on to external sources [130].

Other concerns arise with collaborative applications, where ro-
bust privacy settings are needed to prevent sensitive spatial data
from being viewed in the wrong context or by collaborators with-
out granted permissions [56]. Further design considerations will
need to be developed for users of situated visualisation applications
to keep them safe from potential dangers that may arise due to
distraction. Social considerations also may also arise from how
application use affects others in the user’s vicinity [64]. Supporting
safe and social applications will require integration of contextual
awareness [57] with adaptive systems [85].

5 INTERACTINGWITH IMMERSIVE
ANALYTICS SYSTEMS

Interacting with Immersive Analytics systems is uniquely challeng-
ing in part because of a combination of novel, multimodal input
and output technologies and demanding complex use cases. Con-
sequently, challenges arise regarding how to make use of human
perception, cognition and interaction capabilities, how to support
transitions around immersive environments, how to cope with the
high complexity of immersive interaction for data analysis, and
how to design spatial and multi-sensory feedback.

C6: Exploiting Human Senses for Interactive
Immersive Analytics
The need to better understand human spatial perception and cog-
nition is a grand challenge across multiple fields. For Immersive
Analytics, it inspires a key challenge in interaction design: How can
designers best exploit human senses for efficient Immersive Analyt-
ics? Given the prevalence of multimodal interaction in Immersive
Analytics, understanding human senses can allow visualisations to
better map interaction modalities to the most appropriate human
sense. Visuals provide information for our sense of sight. Sound is
the next easiest to support with existing technologies, followed by
touch. Immersive systems usually have spatial environments which
the user can freely traverse. Such environments can be taken ad-
vantage of by both sound and touch. Objects emitting sound within
the environment may benefit from spatialised audio, assisting users
in finding the object’s location. Touch can assist us by allowing
us to detect objects outside our field of view; alerting us of their
existence without having to directly look at them.

A related challenge is how to make our systems accessible to
people who cannot use some of these channels, such as people with
visual impairments [147]. For example, tactile components in visual
analytics have been used to support visually impaired analysts [92].
Research into actuated displays [50, 82] offer a promising direction
for visually augmented tactile dynamic immersive experiences for
visual analytics.

Finally, Immersive Analytics needs to consider physical exer-
tion: gestural input, spatial interaction, and physical navigation are
all physically demanding. Research into the physical interactions
needed for immersive analytics, especially in virtual environments,
is often limited due to users suffering from increasing feelings of
simulator sickness or discomfort with lengthy use. Duration limita-
tions are often due to headache, nausea, dizziness, motion sickness
[52, 131], eyestrain [74], heat from usage (battery packs, displays,
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additional layers of fabric), muscle fatigue (neck/shoulders), pres-
sure marks due to a HMD strapped and pressed into one’s face,
and, most notoriously, “gorilla arm” due to physical exertion during
interactions [63]. A critical goal for future Immersive Analytics
research is to design an immersive system that allows prolonged
usage for users interacting in ways standard to data analytics.

C7: Enabling Multi-Sensory Feedback for
Immersive Analytics
A challenge complimentary to multimodal interaction is multi-
sensory feedback. While multi-sensory data representation in Im-
mersive Analytics has been previously discussed [91], there is a
need to also consider multi-sensory output as feedback for input.
Of the 5 senses (sight, sound, touch, smell, and taste), electronic
devices usually are able to provide for sight and sound, though
recent advances may facilitate other senses [103, 110, 133]. Mobile
devices and immersive controllers have some limited capabilities
for touch feedback. The remaining senses, smell and taste, are the
hardest to be able to reproduce on demand. One of the earliest
multi-sensory immersive systems was built in the 1950’s, the Sen-
sorama [62]. There have recently been research efforts into altering
our perception of taste through smell in VR [84].

Arguably audio is the closest of the 5 senses to readily providing
us with a fully immersive sensory experience using commodity
technologies. Headphones (or earbuds) with built in noise cancella-
tion and capability for spatialized audio would, in theory, be able to
fully block out the real world and allow us to only hear the immer-
sive environment. However, this leads to an interesting question:
Should the real world be blocked out? Emulating our senses helps
provide a sense of immersion and allows us to continue to utilise
them as we are familiar (for example, locating an object based on
sound alone). But the challenge with audio is determining when
to break away from emulating the real by altering the audio to
enhance our experience.

The capability to provide touch is in a juvenile state for common
commodity devices. Texture is something that cannot be easily con-
veyed without specialised hardware. From this point of view, there
are many directions in which touch can be improved: better location
coverage, texture, proactive (touching something) versus reactive
(something touching the user), resistance, and other variations, like
temperature. However, unless a brain-to-computer interface alter-
native is developed, touch will need physical emulation through
specialised, worn equipment. In a future with advanced haptic de-
vices, the grand challenge for Immersive Analytics would become
determining a standardised set of equipment to provide the ideal
minimum set of functionalities for each of our senses. Upon reach-
ing this point, the challenge becomes identifying when to break
away from realistic emulation, similar to audio.

C8: Supporting Transitions around Immersive
Environments
Immersive Analytics users must cope with multiple kinds of tran-
sitions, such as the transition between a mostly seated work en-
vironment and one that requires more physical involvement, the
transition from using desktops (where most users have expertise) to
Immersive Analytics (which may be novel and unfamiliar) [58, 135],

or the transition between input devices as the user switches be-
tween conventional and Immersive Analytics systems throughout
the analysis workflow [121]. While novice-to-expert transitions
are well-studied in the literature [23], Immersive Analytics brings
about new, far more complex transitions which can affect interac-
tion fluidity [38].

To solve these challenges, future systems might aim to lower
entry barriers to Immersive Analytics interaction. One promis-
ing possibility is to combine established interfaces, like keyboard,
mouse or tablet input, with immersive HMDs [11, 14, 54, 58, 135].
This is closely related to the question of discoverability: many "nat-
ural" interaction techniques used in Immersive Analytics, including
gestures, speech, and tangible tokens, are not obvious to users [98],
which risks hiding possible actions from them. Working towards a
unified interaction vocabulary can help make these transitions eas-
ier. The goal of this simplification is to reduce the learning curve for
Immersive Analytics users and to better exploit existing expertise.

C9: Coping with Immersive Analytics
Interaction Complexity
Immersive Analytics interaction is inherently multimodal and mul-
tiview, leading to rich and complex interaction scenarios. In con-
trast to many prior immersive systems, Immersive Analytics needs
to support a multitude of different, often complex analysis tasks;
simple direct manipulation techniques may not be sufficient. For in-
stance, annotation is a key task in most analysis workflows, leaving
room to investigate the use and productivity of text entry modalities
in Immersive Analytics [33].

There are a variety of interaction technologies: different display
technologies (HMD, tablet, projection) will probably need different
input devices (6DOF controller, 3DOF controller, speech, gesture,
eye gaze, head orientation, tangibles). However, prototyping such
device combinations is difficult [104], and many of these interaction
modalities are not mature enough to allow a systematic use for
analytic tasks. For instance, on-body interaction has received much
attention [113, 120, 146], but previous work has mostly explored the
use of such modalities for simple tasks. Understanding the relation
between tasks and technologies will allow Immersive Analytics
systems to exploit the rich interactive techniques of immersive
systems to conduct analysis tasks as efficiently as on regular desktop
environments.

6 COLLABORATIVE ANALYTICS
The possibility to facilitate collaboration, either remotely (using
approaches like AR and VR) or colocated (in contexts like CAVEs),
is a key benefit of Immersive Analytics systems. In this section,
we describe challenges related to how people collaborate using
such systems. They focus on the behaviour of users with other
collaborators in this context, on the constraints of reality, the use
of different platforms, and more generally on the integration of the
current practice and the assessment of the collaboration.

C10: Supporting Behaviour with Collaborators
While different tools exist to meet and work collaboratively us-
ing immersive technologies, such capabilities are still relatively
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new for a large proportion of users. One challenge will be to ac-
tually teach users to collaborate with such technologies. It means,
at first, providing them with a good understanding about how to
perform specific tasks with Immersive Analytics (including how
to share views or data and how to control permissions for virtual
objects), and second providing them with a good understanding of
the different ways they can communicate with others (can they use
hand gestures, head movement, is the sound of their voice lowering
with distance?). Finally, users should understand the technical con-
straints of the current system (latency, lack of facial expression, etc.).
In an ideal system, these capabilities should be easily discoverable
by users while starting their collaboration using affordances (and
the appropriate signifiers). For instance, the use of hand models to
replace the more classic controllers in some current VR tools allows
users to infer that they can actually perform a (sometimes limited)
set of hand gestures.

Another crucial point for future research is to learn to establish
communication between users for various collaboration forms [69].
In the context of data analytics, different ways of communicating
about data can be identified: (1) free-form communication between
data analysts when they make sense of the data together and (2)
more formal communication when an analyst presents the data to
a given audience.

One challenge in Collaborative Immersive Analytics is to provide
platforms that integrate communication scenarios in a transparent
way. For example, a group of analysts should be able to meet in a VR
space that allows them to communicate freely with each other when
making sense of data. Freedom of movement, annotation, and oral
communication is crucial when building meaningful visualisations
as a group. Conversely, when a group of analysts join a VR space to
follow a data presentation, the system should limit the interaction
of the attendees (for example, the avatar of an audience should not
be allowed to go to the presenter’s place, audio communication
should be limited, etc.). The type of immersive technology plays
an important role in this context. If users meet in a CAVE-style
environment, their behavior cannot be constrained as much as it
could be in a VR platform.

Finally, it is important to understand how users react to the
different forms of embodiment of their collaborators. Such embodi-
ment can be fully physical in a colocated settings (like CAVEs) and
or using avatar in remote settings (as with HMDs). In the latter,
the degree of embodiment has been shown influence how people
socially behave. On a remote setting with tabletops, Doucette et al.
showed that a higher degree of visual embodiment led to a better
workspace awareness and more awkwardness when people cross
embodiments [32]. Overall, there are still interesting research ques-
tions to tackle to support effective collaboration: What affordances
can show users how to collaborate? What collaboration cues can
support different collaboration styles and transitions between those
styles? How can these cues be used to constrain users’ action in
support of the task? What would be the impact on collaboration of
the different forms of embodiment available in different platforms?

C11: Overcoming Constraints of Reality
Using VR technology to implement collaborative virtual environ-
ments (CVEs) allows for co-presence [93] and communication using

not only speech and potentially video, but also gestures, posture
[127], and even facial expressions [19] for geographically dislocated
users. All these communication channels are available naturally
in real world co-located collaboration, but have to be artificially
enabled in a CVE.

The fidelity of the remote user representation is highly dependent
on the tracking technology (head+input devices, gestures captured
from input devices, eye tracking, and tailored prototypes [90]).
Not all participants will have the same equipment available and
thus may be represented differently, leading to asymmetries in
interaction and communication.

Although we still face many technical challenges implementing
a fully articulated user representation, VR can provide means to
enhance communication and improve collaboration. Pointing visu-
alised by ray representations allows for exact indication of an area
or point of interest. Eye gaze or the view frustum of the remote user
could be displayed to highlight the awareness area [107]. Immersive
Analytics uniquely affords sharing 3D datasets and discussing them
in the same CVE, as if they are physically available in the same
space.

Several research questions still need to be explored: How can sys-
tems manage the asymmetries of collaboration cues due to the dif-
ferences of material used?What constraints in reality could be over-
come by immersive technology? Could more efficient workspace
awareness techniques lead to more efficient collaboration than
working face-to-face? Although current systems like Spatial.io 8

or Mozilla Hubs 9 allow for loading data sets and support multiple
display types and input modalities, they still only provide a very
basic implementation of collaboration and visualisation support, as
it would required for collaborative Immersive Analytics.

C12: Supporting Cross Platform Collaboration
Collaboration often entails a diverse group of participants all work-
ing together towards a common goal. However, these participants
often do not share the same space, technology, or capabilities.
Users wishing to collaborate with Immersive Analytics technolo-
gies should not be limited to only collaborating with users of the
same Immersive Analytics technologies. A key opportunity for fu-
ture Immersive Analytics collaborative research is to explore the
space of cross-platform collaboration. Such spaces bring a multi-
tude of opportunities. For example, someone with a VR headset
could collaborate with a group of people in a CAVE, or more simply,
someone with a desktop with someone with a VR headset. Such
collaboration could be useful in cases where participants have dif-
ferent roles [134] or where users have to perform different tasks
that need different perspectives [68].

Differences in display type raise many interesting questions.
Both the display dimensionality (3D for VR/AR headset and CAVE,
but 2D for Wall displays or desktops) and the modalities of inter-
action (6 Degrees of Freedom controllers, mouse, keyboard, multi-
touch, etc.) can vary significantly. Is it better to provide the same
environments to everyone (in favor of common ground), or to adapt
the visualisations to the characteristics of the display for each user?
In the latter case, how would a workspace provide awareness to

8https://spatial.io/
9https://hubs.mozilla.com/

https://spatial.io/
https://hubs.mozilla.com/
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each user and, more generally, allow appropriate communication,
using deictic gestures?

An interesting use case in which to study such questions is edu-
cation. Imagine students coming to class joined by others remotely
from their home, using desktops or VR.

C13: Integrating Current Collaboration Practice
Immersive collaboration systems must cognitively compete with
established collaboration practices. It is the norm to collaborate
without immersive systems, be it face-to-face in a meeting room or
at a distance with video conferencing. Using immersive systems is
novel and uncommon, if used at all. This is due in part to hardware
constraints like availability, cost, and space. Although distance
formats are becoming increasingly common, their productivity is
still measured against face-to-face formats. Immersive systems have
a few peculiarities that allow designing for local, distance, or hybrid
collaboration.

To support, enhance, or emulate face-to-face meeting spaces,
some common information actions must be considered: content
contribution, organization of content, enabling others to review
and correct, taking notes or annotating directly, and recording to
allow later review or asynchronous participation [81]. This list does
not take into account features necessary to support awareness of
others or synchronization between participants. In support of local
collaboration, CAVE developers have noted that their design has
shifted from being a system within the room to being the entire
room. Their goal is a war room [88] to support co-located collabora-
tion [128], but they must fall back on other formats (such as video
conferencing) to support distance collaborators. In this scenario,
participants are capable of hosting a traditional meeting and taking
advantage of immersive features on demand. The system is a com-
plementary component of the meeting, which could have otherwise
still occurred without the system. In order for immersive systems
to be the main component of the meeting, they must provide not
only features to support traditional environments but capabilities
“beyond being there” [66].

Distance collaboration offers the greatest opportunities for Im-
mersive Analytics, but also starts with the largest hurdles to over-
come. The primary problem for distance collaboration is a question
of how much is expected of an immersive system. Should the im-
mersive system fully support a collaboration session from start to
end or only part? It is possible for immersive systems to be used
for phases or parts of collaboration rather than the entire session.
But is it practical? Consider how different system swapping is from
software swapping. Modern meetings often involve frequent soft-
ware swapping. An example scenario is checking one’s email to get
a link allowing access to the video conferencing. During the meet-
ing someone shares a PDF for download to allow private viewing
and later the team works on a shared online document. Swapping
betwewen these 4 applications (email, video, PDF, and shared docu-
ment) can all be done from one system and is significantly different
from swapping between 4 different machines throughout a meet-
ing. Immersive systems intending to fully supporting collaboration
sessions must design and create features to emulate traditional col-
laboration on top of addressing problems that arise from distance
collaboration [100], which modern video conferencing software

applications are still trying to address. These problems are further
complicated by the 3D nature of immersive systems and potential
environment disparity between users, both virtual and physical. Im-
mersive systemsmust support the full workflow of current practices,
if collaboration sessions are to be conducted without interruptions
or device switching. Reflecting back to the previously-mentioned
information actions, immersive systems will need to break away
from focusing on only its strengths and consider the integration of
non-3D aspects for the sake of productivity, for example, note tak-
ing and document editing. It should be noted that there are different
types of meetings (presentation, brainstorming, design review, etc.)
that define intention and purpose behind collaboration. Identifying
and implementing a core set of features to target a specific type
of meeting (or user group) will be critical in convincing users to
adopt it as part of their current practices.

This challenge leads to several research questions, including:
How much should systems support, enhance, emulate, or deviate
from current collaboration practices in immersive environments?
How systems can integrate both colocated and remote users, and
thus support different types of hybrid collaborations? How much
of the collaborative session should be supported by the immersive
system?

C14: Assessing Collaborative Work
As new collaborative Immersive Analytics systems are designed,
one challenge that emerges is how to assess the role the system
plays in facilitating productive collaboration. Collaborative work is
difficult to evaluate as there are many variables to consider. Collabo-
rative Immersive Analytics systems need to support both taskwork
and teamwork [77, 105] as the outcome of the task and the dynamics
of collaboration are important. Therefore, evaluation frameworks
must leverage both qualitative and quantitative measures to assess
the quality and effectiveness of collaboration while using Immersive
Analytics systems.

While some parallels between in-person collaborative work and
collaboration in virtual environments exist, further research is
needed to account for the differences that virtual environments
introduce. When doing group work in an immersive environment,
factors that could affect collaboration not present in colocated group
work include device asymmetry (some users wearing a wireless
or tethered VR headset, while others joining on desktop or mo-
bile). This asymmetry could create a division in the ways specific
members can participate in the collaboration, how communication
and interaction cues are represented, and how collaboration can
be observed in field and lab studies. Further research is needed to
develop evaluation frameworks that account for these differences,
so that researchers can better compare new collaborative systems
to existing ones to inform the design of future systems.

7 USER SCENARIOS AND EVALUATION
In our discussions, identifying suitable scenarios for Immersive
Analytics and evaluating them accordingly has been identified as
a grand challenge. Specifically, we define 3 grand challenges as
illustrated in Fig. 4. In “Defining Application Scenarios for Immer-
sive Analytics,” we address the challenge of identifying why certain
scenarios lend themselves to immersive analytics, while others may
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Figure 4: Overview of the “User Scenarios and Evalua-
tion” grand challenges. These challenges collectively con-
sider how users and applications shape assessment in Im-
mersive Analytics (IA) systems.

not. We emphasise the need to develop recommendations as to
when in the overall analysis process Immersive Analytics would
be best placed. The “Understanding Users and Contexts” challenge
addresses the questions surrounding who the users of Immersive
Analytics systems are and where they perform their work. Finally,
challenges in designing evaluative studies illuminate the need for
“Establishing an Evaluation Framework for Immersive Analytics”
that we consider instrumental for defining what attributes of Im-
mersive Analytics systems we need to consider to evaluate system
performance and how these attributes can be measured. While each
challenge addresses some specific questions as posed above, we
acknowledge that there is a certain degree of overlap between them.

C15: Defining Application Scenarios for
Immersive Analytics
The brief survey in Section 2.2 as well as other existing surveys [51]
highlight the broad range of application areas in which Immersive
Analytics has been used. Past work reports both success as well
as failure stories. As an Immersive Analytics research community,
we know that not all domains or problems lend themselves to
Immersive Analytics approaches or technologies nor do they benefit
equally from the unique affordances of Immersive Analytics. We
argue that, in order for Immersive Analytics to become a productive
means of performing data analysis, we (collectively as a research
and end user community) need to identify those scenarios and
applications that benefit from Immersive Analytics. We need to
be able to answer questions such as: Why do specific scenarios
benefit from Immersive Analytics while others do not? What are
the key attributes of specific applications that make Immersive
Analytics useful? When in the overall analytics workflow can we
best integrate Immersive Analytics?

By creating a set of recommendations and guidelines for when
Immersive Analytics can benefit a target problem, different do-
main communities may be able to use Immersive Analytics more
successfully. Determining the tasks and scenarios that Immersive
Analytics tools can specifically enhance will facilitate engagement
of users in the creation and use of Immersive Analytics systems.

These components can scaffold conversations and design processes
that holistically tailor analytics solutions to the characteristics of
a target problem. This can lead to greater usability of Immersive
Analytics tools and greater adoption of solutions that maximize
benefits to users.

C16: Understanding Users and Contexts for
Evaluation of Immersive Analytics
When designing user studies, researchers must take into consid-
eration who the target users for the system are, where they work,
and what kind of tasks they are likely to pursue [118]. While these
considerations seem intuitive and are well-known in the HCI com-
munity, too often we see studies in the Immersive Analytics com-
munity that limit themselves to short experiments with participants
that are easily accessible, such as students from a university or col-
leagues from work [18]. In doing so, we gain limited insight into the
actual productivity and user experience of Immersive Analytics in
real-world problems solved by domain experts. Furthermore, given
the complexity of Immersive Analytics systems, we may observe a
range of user experiences that are amplified as compared to con-
ventional analytics systems such as nausea, fatigue, and physical
discomfort. Through their novelty, we may observe short term bias
towards over-acceptance of these systems as they are perceived
exciting and fun to use. Open research questions that we consider
important in this context include: What are the attributes of end
users who are accepting of Immersive Analytics systems? To what
degree is acceptance of Immersive Analytics dependent on nov-
elty bias? What are the long term user experience effects of using
Immersive Analytics systems?

To address these questions, we need to provide means for both
short- and long-term assessment of deployed Immersive Analytics
technologies to accommodate effects like novelty bias, learning
effects, and changing acceptance of immersive technologies across
a range of scenarios. Formal protocols should be established that
clearly define criteria for participants’ selection and assessment.
Measuring performance across time may also call for establishing a
user community. A formalised, established community would allow
researchers to elicit user feedback on the usability and productivity
of the emerging technology (translational computer science) with
both domain experts andwith experts familiar with the technologies
to help mitigate confounding effects such as novelty bias.

C17: Establishing an Evaluation Framework for
Immersive Analytics
Evaluating HCI systems with the aim of drawing strong conclu-
sions on user experience and performance is difficult under the
best of conditions. In Immersive Analytics, we deal with specific
challenges, some of which are outlined above, including novelty
bias, learning effects, and uncertainty about application scenarios.
Being able to measure the effects of these challenges is instrumental
in understanding the value of Immersive Analytics systems, but
what are the most suitable methods and metrics to quantify these
effects? How do we deal with the curse of dimensionality in these
studies, given the wide range of factors to assess in these complex
systems? We propose that the Immersive Analytics research com-
munity needs to establish a grounded framework [80] of methods
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and procedures that clearly specify what aspects of Immersive An-
alytics need to be assessed and how these can be measured using
suitable metrics. This framework should include physiological mea-
sures to capture experiences, such as fatigue, arousal, etc. Other
fields, such as ubiquitous computing [117], have formulated such
frameworks to help researchers identify an area of interest, the
concepts associated with that area, and the metrics employed to
evaluate such concepts [39, 77]. While the specifics of evaluation
techniques andmetrics may vary depending on target scenarios and
systems, a common framework can offer a starting point for study
design that may enable comparison across studies. The framework
may also provide perspectives on when specific research questions
require a more focused, controlled study and when productivity
and usability evaluation needs an “in the wild” study.

8 DISCUSSION AND CONCLUSION
In this paper, we describe 17 grand challenges facing Immersive
Analytics researchers. Although current contributions to the field
are already demonstrating the benefits of Immersive Analytics, we
believe finding solutions to these challenges will help Immersive
Analytics systems to reach their full potential.

Our challenges emerged from multiple sessions with a group
of international experts in Immersive Analytics. We identified 4
themes within Immersive Analytics (Spatially Situated Data Visuali-
sation, Interactingwith Immersive Analytics Systems, Collaborative
Analytics, and User Scenarios and Evaluation), comprising 17 grand
challenges. We acknowledge that some of these challenges will be
difficult to solve, as they are confronted with inherent limitations
of digital immersion, human cognition or immersive technologies.
However, our paper focuses on the scientific challenges of Immer-
sive Analytics, leaving aside other important considerations such
as commercialisation, hacking and security, policy-making, or so-
cial inclusion. Some considerations such as privacy and access to
technology were briefly discussed and further work will be needed
to both better understand and tackle those challenges.

The set of design challenges we discuss are both technically and
conceptually complex, and addressing them will require technical,
epistemological, and social contributions from across a range of
research communities. Challenges like designing guidelines for
spatially situated visualizations (C3) depend on knowledge spe-
cific to the visualisation community and represent extensions or
reframings of ongoing and important challenges in visualisation
research. Others, such as extracting semantic knowledge from real
world environments (C2) and reliably integrating visualisations
into real-world settings (C1) are more technical in nature and call
for contributions from adjacent communities including computer
vision and sensor integration. Finally, challenges related to col-
laboration (C10-14), user scenarios (C15,16), and evaluation (C4,
C17) share links to work in social computing and human-computer
interaction more broadly. As a result, addressing these challenges
requires interdisciplinary collaboration that connects Immersive
Analytics researchers with experts well-suited to confront these
broader technical and social concerns. Such links will allow Im-
mersive Analytics applications to benefit from active research in
these adjacent areas, while also contributing compelling use cases
to motivate new sensing and collaboration techniques.

We hope this paper will bring the growing Immersive Analyt-
ics community together, open new discussions, inform common
research goals, help onboard researchers new to Immersive Ana-
lytics, and provide a coherent view to outside stakeholders, such
as companies and funding agencies. Immersive Analytics offers
tremendous potential to extend and enhance our abilities to make
sense of and communicate through data. Addressing the challenges
laid forth here will enable us to realize this potential and introduce
innovative advancements in this innovative, interdisciplinary field.
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