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a b s t r a c t

This paper presents an Augmented Reality (AR)-based network cabling tutoring system that trains users
how to interconnect cables within a Virtual Local Area Network (VLAN) on a physical switching rack.
AR arrows combined with text-based instruction and a checklist provided assistance during practical
learning. When learners made a mistake, an Intelligent Tutoring System (ITS) identified the source of
the mistake and provided real-time feedback using text, AR and text-to-speech mechanisms. The design
was motivated by the human-cognitive architecture and its five evolutionary principles (proposed
by Sweller and Sweller (2006)). Users performed four consecutive network cabling training tasks
with assistance from our ITS. We found that users made fewer errors when the AR cues, text-based
instruction and checklist solutions were replaced with summarised information and then removed
completely in the final task compared to those who used an identical system with fixed instruction.
Cognitive Load Theory (CLT) explains our results by suggesting that the instructional mechanisms
become redundant as knowledge increases. Implications of the study are discussed as well as how
AR can help facilitate knowledge transfer in the network cabling domain.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In response to growing threats against computer systems,
rganisations require for their networks to be secure [1]. A ro-
ust method of achieving this is to segment the network into
ogical groups of physical ports called Virtual Local Area Net-
orks (VLANs) [1]. However, configuring them requires technical
nowledge that can be difficult to learn [2,3]. Augmented Re-
lity (AR) overlays virtual information on top of the real-world
n real-time [4]. It could help improve learning in network ca-
ling domains because ports are spatially mapped to AR cues in
hysical 3-Dimensional (3D) space [2].
Intelligent Tutoring Systems (ITSs) are computer-based train-

ng systems that facilitate learning of procedures by providing
ersonalised feedback to learners [5]. The effectiveness of AR in
ducation is likely to improve if combined with systems that
eplicate tutoring approaches (such as an ITS) [6–8].

In this paper, we propose a novel training system that com-
ines AR techniques, real-world equipment, personalised tutor-
ng support and finally, a fading mechanism (which gradually
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replaces examples with partial examples and then with no exam-
ples) to facilitate network security knowledge acquisition. Fading
has been shown to improve knowledge retention in mathematical
but not AR or networking training domains [9].

The design of our system is grounded in a cognitive load
framework, which has robust empirical support [10] and strong
theoretical support [11]. Cognitive Load Theory (CLT) suggests
that novices waste mental resources trying to solve problems
[12,13]. Novices tend to acquire knowledge effectively when
problem-solving activities are eliminated or supplemented with
examples of how to solve the problem [14]. Conversely, for learn-
ers with increasing expertise, the reverse is true. Instructional
procedures should be supplemented with problem solving if not
eliminated completely [15]. In this paper, expertise is defined as
having the skills or knowledge to solve specific problems within a
domain [15]. Problem solving is defined as the cognitive processes
used to organise and structure information for achieving a goal,
such as cabling a network [12]. Remediation is defined as real-
time feedback provided by a computing system to guide the user
through fixing errors made during a problem-solving learning
task.

Among the studies reviewed by Akçayır and Akçayır [16], very
few of them focus on CLT and the implications derived from it.

Of the very few AR papers centred around the network cabling
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omain (e.g. Nishino et al. [2], Haramaki and Nishino [17], Herbert
t al. [7]), only Herbert et al. [7] used an ITS and no experiment
as performed.
Similar papers in the AR/ITS domain (e.g. [18–22]) did not

nvestigate cognitive load effects and only some of them per-
ormed an experiment. Those studies used novice participants
nd also did not use multiple learning tasks to test for knowl-
dge transfer. This is an important consideration because novices
equire different instructional procedures compared to experts
o learn effectively (see [23] for a review). Otherwise, redun-
ant instruction is likely to result, which may interfere with
earning [24].

.1. AR-based instructional framework (C1)

The first contribution made in this paper is a series of instruc-
ional principles and effects. We are not proposing extensions to
xisting cognitive frameworks. Rather, we are applying the ex-
sting principles and findings of related work to AR technologies.
ur experiment aims to demonstrate these effects on learning to
uide AR-based ITS design.

.2. Empirical validation of our design (C2)

The second contribution made in this paper is an evaluation
f the robustness of improving an AR-based ITS by adding a fad-
ng mechanism. This demonstration was achieved in two stages.
tage 1 designed and implemented the system to show that
he design was technically feasible. Stage 2 demonstrated that
he implemented system achieved its intended role of reducing
otential side effects that can result from using ITSs in network
abling or similar environments. For example, since problem-
olving processes require additional cognitive resources, they can
nterfere with learning [12].

Problem solving and instructional procedures do not oper-
te in isolation but seem to interact with each other [25]. The
echanisms combined in this paper have mostly been studied

n isolation across separate disciplines (i.e. Artificial Intelligence
n Education (AIED); AR and educational psychology). This pa-
er brings them together to show how they operate when they
nteract.

. Related work

This paper is grounded in the theoretical assumptions of Geary
26] and Sweller [27]. It uses these theories to underpin why
nstruction needs to explicitly guide the user using steps and be
radually replaced with problem-solving activities as expertise
ncreases. This section describes the CLT framework, links this
ramework with AR and ITS technologies, discusses the limita-
ions of the current state and finally, presents a series of AR
nstructional principles and effects linked to the human-cognitive
rchitecture [28].

.1. Cognitive Load Theory (CLT)

CLT suggests that processing novel information during learn-
ng activities uses finite cognitive resources [12,13] (but only
hen processing novel information that humans have not evolved
o learn automatically [29]). In particular, it is processed in
orking memory, which has a finite capacity [30] and dura-
ion [31]. CLT is underpinned by a series of principles that de-
cribe how humans acquire and process culturally-specific infor-
ation or skills [11,26,32]. First, problem-solving skill is devel-
ped by building up large amounts of knowledge that can be

dapted to a set of problems (information store principle).

567
Second, humans have evolved to automatically acquire in-
formation from others and structure it according to an exist-
ing schema in long-term memory (borrowing and reorganising
principle). This follows from the information store principle by
providing a mechanism to gradually construct the information
store in long-term memory. Third, sometimes existing knowledge
is not useful for problem solving, so learners compare problems
and solutions to derive a novel solution (randomness as genesis
principle). This is likely to impose a load on working memory and
reduce learning [33].

Fourth, since human cognition has no mechanism for struc-
turing novel information, it must be learned using problem-
solving techniques which uses working-memory resources [12].
Therefore, working memory is limited in capacity [30] and du-
ration [31] to limit erosion to the information store (narrow
limits of change principle). Finally, working memory limitations
only apply to novel information that is not structured in long-
term memory and that there are no known limits on the amount
of information in long-term memory that can be processed in
working memory (environment, organising and linking principle).

These principles provide a framework for guiding the design of
instruction and helps explain several effects observed in various
experiments. In network cabling learning tasks, the following
effects are particularly relevant:

1. Worked-Example Effect: Worked examples are partially-
completed or fully-completed examples of how a problem
should be solved (i.e. a checklist or a procedure). Working-
memory resources could be wasted by connecting cables
into random switch ports to discover the solution [14,34].
Cooper and Sweller [14] found that providing worked ex-
amples could reduce the redundant problem-solving men-
tal search and improve learning. Therefore, novices benefit
from being instructed using step-by-step instructions [35,
36].

2. Split-Attention Effect: Connecting cables requires users to
divide their attention between a switching rack and paper-
based manuals. Similarly, in a network cabling tutoring
system, the user interface (UI) needs to be designed so
that information is integrated rather than presented across
separate UIs [10]. Otherwise, a split-attention effect results
and the benefits of the worked-example effect will be
lost [37].

3. Modality Effect: In network cabling tasks, the potential for
split-attention may be impossible to completely avoid. So,
audio can be incorporated into the instruction to supple-
ment the visual information. For example, short text phases
could be spoken to reduce the amount of content that the
user has to read. According to CLT, this effect can reduce
cognitive load and increase learning [38].

4. Expertise-reversal Effect: Guiding novices through net-
work cabling tasks helps them learn effectively but is not
effective for experts. Instead, experts should use problem-
solving to facilitate their learning [15,39]. AR may exhibit
a similar effect, becoming less effective as knowledge is
acquired. There seems to be too few studies comparing this
effect and this serves as the motivation for our experiment
in Section 4.

5. Guidance Fading Effect: Developing network cabling skills
through practice should be more efficient when worked-
examples are progressively faded out [39]. This is be-
cause redundant information imposes a high cognitive
load, which interferes with working-memory processing.

6. Human Movement Effect: The human movement effect is
an emerging effect in CLT [40]. It suggests that physically
moving around a switching rack and connecting cables
should reduce cognitive load. This effect occurs because hu-
man movement is a skill that we have presumably evolved
to perform automatically [29].
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.2. Intelligent Tutoring Systems (ITSs)

ITSs are a collection of software components that aim to
rovide personalised learning support by providing remediation
r affirmative feedback to student solutions during problem solv-
ng [41,42]. They have been shown to improve grades in mathe-
atical domains [43] and knowledge acquisition in AR-assisted
otherboard assembly tasks [18]. They differ from traditional
-learning systems because unlike the latter, they integrate cog-
itive mechanisms [15].

.2.1. Intelligent tutoring limitations
ITS research aims to understand how ITSs can improve educa-

ional outcomes. Therefore, there is a growing need to investigate
he potential limitations of ITSs in network education and how
hese limitations might be mitigated.

Despite the potential of ITSs, they tend to be ineffective for
onceptual knowledge acquisition [44,45]. As such, it has been
roposed that they be combined with worked-example instruc-
ion [45,46].

Combining ITSs with worked-example instruction may reduce
heir effectiveness when training experts or novices that have
ained skills. For example, Menozzi et al. [20] found that the gap
etween ITS and non-ITS narrowed overtime as the participants’
nowledge increased. This suggests that there could be some
nstructional effect that interferes with their learning [14]. In
CLT framework, the expertise-reversal effect explains these

indings [23]. It suggests that instructional techniques that are ef-
ective for novices become extraneous and redundant for experts.

One way to overcome this problem is to use fading instruc-
ion, which transitions from complete examples, to partially-
ompleted examples and finally, to providing minimal/no
xamples [47]. For example, when practising a task, the complete
olution is provided for the first task. A similar task with a
artial example or a more summarised completed example is
hen presented. The purpose of fading is to facilitate practice
sing imagination, which helps the user integrate the knowledge
nto their long-term memory [48]. Various studies have shown
hat fading out instruction improves performance and transfer
24,49,50].

.3. Augmented Reality (AR)

AR overlays virtual information in real-world 3D space in real-
ime using a combination of tracking, display and interaction
echnologies [4,51]. It has promising applications in education
8,52]. For example, in the network cabling domain, virtual in-
ormation or arrows could be overlaid on physical switch ports
hrough AR [7].

Some works integrated AR into network cabling activities
such as VLAN management) [2,7,53]. Their rationale was that AR
mproved the mental mapping between the ports and the abstract
nformation. This mental mapping has been well established in
on-AR research. For example, in mental model construction
nd in schema development theories (e.g. Craik [54],Al-Diban
55]). However, cognitive load effects have not been explored
n AR cabling domains, despite them potentially interfering with
nowledge integration (e.g. [56]).

.4. Limitations of AR education experiments

Constructivist educational philosophies emphasise individu-
lised learning experience, active and discovery learning often
hrough problem solving [3,57–59].

AR research in training, maintenance, assembly and education
ocuses heavily on discovery, exploratory and other construc-
ivist approaches. For example, Westerfield et al. [18] focused
568
on learning styles and engagement as factors for AR’s useful-
ness. Ibáñez and Delgado-Kloos [60] found that most AR ed-
ucation studies between 2010 and 2017 focused primarily on
exploration learning.

While useful, more studies on CLT, evolutionary psychology
and instructional design would also be beneficial. For example,
such studies could help inform AIED researchers of the suitable
mechanisms that need to be incorporated into an ITS. For example
(1) instructional differences between novices and experts, (2) the
implications of instruction for transferring knowledge and finally,
(3) how different cognitive load effects interact with one another
in an AR training task. Our experiment is motivated by these
limitations and gaps.

2.4.1. Expertise considerations
The first limitation stems from the underlying assumption

that instructional procedures effective for novices should likewise
be effective for experts. CLT suggests that this assumption may
require reconsideration [39]. For example, some studies (i.e. Hen-
derson and Feiner [61],Vargas González et al. [62],Morillo et al.
[63]) featured participants with existing domain knowledge and
did not demonstrate AR/ITS effectiveness over Virtual Reality (VR)
or desktop-based conditions. Morillo et al. [63] found that AR
was not significantly better than a video condition for knowledge
acquisition. Lin et al. [64] found that AR only marginally helped
low-achieving learners while providing no measurable benefit for
high-achievers. Radkowski et al. [65] found that the effectiveness
of AR annotations varied according to task difficulty.

Many works that we reviewed used novices in their AR ed-
ucation experiments (e.g. Westerfield et al. [18],Henderson and
Feiner [66],Hou Lei et al. [67],Tsuruzoe et al. [68]). Other ex-
periments (e.g. Henderson and Feiner [69],Funk et al. [70],Thees
et al. [71]) did not seem to report or control for prior learner
knowledge.

Some AR studies have controlled for expertise–novice differ-
ences. For example, in non-ITS AR-based studies, participants
were provided with background information prior to using the
system (e.g. Wiedenmaier et al. [72] and Thees et al. [71]). Despite
these controls, they neither used an ITS nor a worked-example in
any condition.

So, it unknown to what extent the ITS or AR can transfer con-
ceptual knowledge without prior instruction. While we did find
some studies using an ITS in an AR training domain, these were
too few to demonstrate robustness. For instance, only Westerfield
et al. [18],Menozzi et al. [20] and Herbert et al. [22] performed
an experiment to test for knowledge retention and/or usabil-
ity. Westerfield et al. [18] used novices for their motherboard
assembly experimental task.

Interestingly, Gavish et al. [73] found that experienced expert
users trained using AR made fewer uncorrected errors compared
to video-based or VR training systems. This serves as a motiva-
tion for why expertise instructional considerations may require
adaptation when implementing them in an AR training system.
It also suggests that, despite expertise considerations, AR is still
superior to video alternatives for problem-solving tasks.

2.4.2. Transfer considerations
The second limitation is the lack of investigation on testing

for knowledge transfer, which is when a task is repeated multiple
times and users build on their previous knowledge to understand
the slightly different scenario in the task. This is important when
the goal is to build up a knowledge store as per the infor-
mation store principle. Evidence is emerging that those with a
greater information store automate their skills and perform it
unconsciously without attention slips [14,74].

The AR-based ITS studies that we reviewed (e.g. Herbert et al.

[7],Westerfield et al. [18],LaViola et al. [19],Menozzi et al. [20],
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erbert et al. [21,22],Vargas González et al. [62]) did not test
or the effects of transfer on learning [14]. For example, West-
rfield et al. [18] performed one simple task to facilitate training.
imilarly, Thees et al. [71] used a single task to test if skills or
nowledge had improved.

.4.3. Interaction effects
The third limitation is the lack of integration of certain types

f skills and how these interact to influence cognitive load. Some
kills and knowledge are described as biologically-primary be-
ause we have evolved to perform them unconsciously [32].
he extent to which these skills interact with worked-example
nstruction and remediation in an AR-based network cabling task
s unclear. These implications serve as another motivation for
hy the different effects need to be combined and investigated

n an AR experiment.

.5. AR instructional principles

We adapted the five evolutionary cognitive principles of
weller and Sweller [11] to AR to devise three AR instructional
rinciples. First, AR facilitates learning by integrating informa-
ion. Second, AR allows intuitive interpretation of information
sing biologically-primary skills, and finally, improves knowledge
cquisition when combined with an ITS [18].

.5.1. AR integration principle
The AR Integration principle predicts that learning using AR

ill result in more effective outcomes because AR creates a
ental mapping between the object and the virtual informa-

ion. This helps in two ways. First, by creating a link between
emporary working memory information and long-term memory
nformation by chunking associations into single elements to re-
uce working memory usage [67]. Second, since the information
s tied to the real-world, it reduces the split-attention effect.
or example, a study in university physics education showed
hat integrating information using AR reduces cognitive load as
redicted by the split-attention effect [71].

.5.2. AR interpretation principle
The AR Interpretation principle predicts that AR will enhance

nderstanding of spatial concepts because humans have evolved
o interpret 3D information [32]. Hou Lei et al. [67] found that
sers of an AR training system for Lego assembly required less
nformation compared to the Non-AR group, which used an in-
truction manual.

.5.3. AR transfer principle
The AR Transfer principle predicts that AR’s effectiveness will

e enhanced if it is combined with instruction, such as an ITS [18].
n an AR physics study, AR was demonstrated to have reduced
ognitive load [71]. Despite this, no differences in conceptual
nderstanding were found. We suspect that this might have
een because there was no remediation or worked-example in-
truction to facilitate the transfer of knowledge [14]. Therefore,
he integration of AR with worked-example instruction should
mprove AR’s effectiveness.

.6. AR instructional effects

The works discussed in this paper (e.g. [64,72,73]) suggest
hat the AR instructional principles previously described may not
niversally hold true. We derive a series of effects to explain the
nconsistent results.
569
2.6.1. AR bias effect
The AR bias effect occurs when AR mechanisms implicitly and

unconsciously biases the perception of the task or the system
used. In a review by Schomaker and Meeter [75], novel stimuli
(such as AR) can prime the user to respond more efficiently to
subsequent stimuli, which can bias the emotional states. Users
may report that the AR cues helped them learn or felt enjoyable.
Often, there is no measurable change in learning outcomes rel-
ative to non-AR controls because no actual learning effect was
created by the AR cues (e.g. Morillo et al. [63]).

2.6.2. AR unconscious-stimulation effect
The AR Unconscious-stimulation effect occurs when users of

an AR training system exceed performance expectations on easy
tasks. It occurs because AR, due to being used in a novel way,
results in a stronger response because humans have evolved to
respond more attentively to novel stimuli [75]. AR produces a
novel response if it is used for learning of novel information [75].

2.6.3. AR acceleration effect
The AR Acceleration effect occurs when users of an AR-based

ITS learn significantly faster than those trained with AR only.
For example, users trained using a non-AR ITS, Sherlock, demon-
strated roughly 4 years of professional experience with just
25–30 hours of training [76]. The effect is facilitated by cognitive
mechanisms designed to operate unconsciously. The implication
of this effect is that novices trained with an AR-based ITS may
quickly acquire the knowledge and become experts.

2.6.4. AR problem-solving effect
The AR problem-solving effect occurs when users success-

fully solve a problem in an AR context regardless of the quality
of instructional procedures. The effect may result in AR-based
instructional principles or knowledge acquisition having no mea-
surable effect. For example, Wiedenmaier et al. [72] found that
AR provided no measurable gain over paper manuals for ‘‘intuitive
and repetitive tasks.". So, as a task becomes easier due to gaining
experience, the instructional procedures are redundant so should
be removed.

2.6.5. AR conditioning effect
The AR conditioning effect predicts that users of an AR training

system perform significantly slower or produce more mistakes
than non-AR controls due to inattention. Working memory reg-
ulates attention and control [77]. Overloading it results in at-
tention lapses and misfires due to incorrect reactions to stimuli
[75,78,79].

If cognitive load is too low, unconscious conditioning may
occur because there is no effort invested into regulating atten-
tion [80,81]. For example, Wiedenmaier et al. [72] found that for
easy tasks, AR provided no benefit. Therefore, difficulty should be
increased by removing or reducing AR-based cues.

2.6.6. AR novice effect
The AR conditioning effect describes how AR itself becomes

redundant with increasing expertise. Conversely, the AR novice
effect predicts that the effectiveness of an ITS decreases in an
AR training environment as users gain skills or knowledge. The
implication is that an AR training system without an ITS should be
used to train experts. The effect occurs because the AR condition-
ing and problem-solving effects interact with the ITS which in-
creases redundant use of mental resources which depletes limited
working memory [23].
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.7. Summary

In summary, CLT proposes that humans have evolved to be
ble to perform problem-solving by structuring information in
ong-term memory and that when this information is not struc-
ured, a heavy load must be processed in working memory [11].
ince working memory is limited in resources and the amount
f time it can hold knowledge, this can interfere with learning
12,30,31]. Therefore, Kirschner et al. [82] suggests structuring in-
ormation and explicitly presenting it to novices during problem-
olving learning activities such as network cabling. However, as
xpertise increases, an effect results where structured instruction
nterferes with learning and should be faded out [50].

These mechanisms could be combined together in an AR train-
ng system to benefit from the advantages that structured in-
truction, problem-solving and AR can provide. For example, an
TS in an AR-based network cabling training system could pro-
ide guided problem-solving. Despite the potential advantages,
otentially confounding factors or limitations with this kind of
ystem are unknown. We did not find any user study which
nvestigated these effects in a combined fashion. For example,
ost AR training tasks either lacked an ITS, did not use worked-
xample instruction or did not fade out instruction. They were
otivated by constructivism, which leans on the assumption that
roblem solving should precede instruction. Evidence is emerging
hat this is not ideal for novices [36].

Using CLT, we have designed an AR-based network cabling
TS that switches from full instruction, to partial instruction, to
inally, no instruction. This system is described in Section 3. Fi-
ally, the related work, our instructional framework and the gaps
n existing AR/AIED areas serve as our motivations for evaluating
ur designed AR cabling system in Section 4.

. System description

Our system, AR EtherGuide, is an AR handheld tablet applica-
ion that guides users through interconnecting cabling between
witches on a physical network rack in accordance with VLAN
oncepts. When any of the concepts are violated, the system
rovides feedback and identifies which concept was violated. The
ystem operates in two modes: (i) Task support mode, which pro-
ides the same instructional detail across all four experimental
asks and (ii) Scaffolding mode, which fades out instruction after
ach task is successfully completed until eventually, no examples
nd annotations are shown (Fig. 1).

.1. Artificial Intelligence (AI) techniques

Our system uses an ITS to provide problem-solving support,
rror detection and error correction. Our ITS decouples problem-
olving support from remediation. Ashman et al. [36] showed
hat novices benefit from examples that precede problem solving
or difficult learning tasks.

.1.1. Domain modelling
The ITS uses an Artificial Intelligence (AI) technique called

onstraint-based modelling (CBM) to represent ideal or satisfac-
ory knowledge as an ontology in a series of constraints [83–85].
rrors are implicit in the solution and are not explicitly defined.
his varies from other types of domain modelling where errors
re explicitly defined as rules [84]. This has the advantage of not
equiring a large library of buggy rules.

Use of CBM is motivated by the fact that network cabling
ystems have not been extensively studied in AIED research. So,
here is a lack of knowledge on the explicit rules needed to be
odelled. For example, in ITSs that use explicit rules, a rule could
570
Fig. 1. AR EtherGuide in non-faded and faded modes.

e added to catch certain types of misconceptions. For example,
n networking, learners often confuse the switch number with
he port identifier (ID). This could be modelled as a bug within
misconception library. In CBM, however, misconceptions are
ot explicitly defined. A meta-analysis found that while providing
eedback on misconceptions was perceived to be more effective,
o significant differences were found [86].
Finally, CBM is combined with a variant of model-tracing that

hecks the constraints each time a cable is either plugged in or
nplugged. If any of the constraints in the solution are violated,
hen the system determines that an error has been made. The
ystem does not have a list of ports hard coded into the system,
hich are correct. Rather, it infers if both ends of a port is valid
y checking to see if any of the constraints are in violation using
he domain model in Appendix B. For example, if the two ports
elong to the same switch, then a constraint violation (bridging
oop) has occurred.

.1.2. Pedagogical modelling
Our system performs pedagogical modelling, which aims to

eplicate teaching strategies. Once either a correct or erroneous
ction has been detected, the system then needs to know what
t should do. In our case, this typically involves displaying a
eedback message and showing some AR arrows, ticks or crosses.

The pedagogical model comprises of a series of properties that
re mapped to variables in Extensible Markup Language (XML)
ormat (Appendix C). When the fading mode is enabled, some of
he pedagogical properties are disabled (i.e. displaying of annota-
ions is set to false, which disables it). As a result, annotations are
o longer shown. The pedagogical model is consistent between
sers, and only varies in the case of the fading condition.
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Fig. 2. The User Interface button pane.

.1.3. User modelling
Our system performs user modelling, which involves person-

lising the instruction based on data contained within the user
odel. Since our study focuses on certain instructional interven-

ions, the user modelling capabilities are limited.
The first type of user modelling is keeping a record of previous

iolations in the domain model. So, if the user repeats an error
hat they have already committed, the system provides instruc-
ion that they have already been instructed on that error. This
elps reduce unnecessary redundancy. Similarly, the previous
abling configurations already tried are also stored in the user
odel. So, if the user interconnects the same two ports, then the
ystem provides feedback that the ports have already been tried.
The second type of user modelling is a list of feedback options,

hich the system iterates through. Each message is paired with
n ‘‘if statement’’ that consists of a property and a Boolean value.
f the property is found in the user model, the Boolean evaluates
o true. Otherwise, it evaluates to false. For example, it may
isplay shorter messages for subsequent attempts of the same
abling error rather than merely repeating the previous message
gain.

.2. User interface design

The UI was designed in accordance with CLT and the AR
nstructional principles (proposed in Section 2). Our UI was de-
eloped over time and evaluated through several pilot studies
see [7] for an earlier iteration of the system) as part of a larger
roject. The AR EtherGuide UI consists of three components: (1)
he control pane; (2) feedback pane and finally (3) the check list
nd VLAN pane.

.2.1. Control pane
The control pane contains touchable buttons that the user

nfrequently pushes (Fig. 2). They are primarily used for initially
onfiguring the UI for the experiment.

• Stop: Manually stops the current task and proceeds to the
next cabling task.

• Repeat Message: Text messages on the tablet screen stay
visible for 10 s. Pressing on this button forces the last played
message to be repeated.

• Look up VLANs: Toggles the VLAN table on or off (Fig. 4(b)).
• Task Support: Toggles between Task Support and Scaffold-

ing modes. It cannot be changed once the task has been
started.

.2.2. Feedback pane
The Feedback pane shows instructional text to the user (Fig. 3).
hen the action by the user is determined to be correct, virtual

ick marks are displayed over the two ports (Fig. 1(a)). The user
eceives feedback that their solution is correct. The text also
xplains why the solution is correct. This helps clarify tentative
ut correct actions in novices [87].
Synthesised audio of feedback messages were generated on-

emand using the open source Mary text-to-speech system [88].
ary was installed on a backend Intel i7 Nvidia GTX 950 gam-

ng personal computer (PC). Audio was streamed to a Galaxy
amsung Tab S5e Wi-Fi 64GB tablet over a web connection. The
ablet then played the audio, helping the user avoid splitting their
ttention between trying to read the feedback and the wiring

ack [38,89].

571
Fig. 3. The Feedback Pane: shows the text-based feedback to the user. This is
typically feedback about the learner’s progress.

Fig. 4. Checklist/VLAN Table pane: Toggles between VLAN and check list pane.

3.2.3. Check list and virtual local area network panes
The Check List pane allowed the user to quickly check that

they have covered all the items before connecting two ports
(Fig. 4(a)).

The check list provided the items that users needed to men-
tally learn. Since these items were mentally checked before re-
moving or connecting a cable into the rack, they are probably
best displayed simultaneously as a group. Users must rehearse
the entire check list because missing out even a single item would
result in an invalid connection. So, separating them creates a
temporal (time-based) separation that results in a split-attention
effect [10].

The VLAN pane showed all of the ports within the entire rack
and their corresponding mappings to VLAN IDs (Fig. 4(b)). Ports
were automatically and randomly assigned to randomly-created
VLANs when the task was started. Users could toggle the pane
on/off by tapping on the Look up VLANs button on the control
pane. When the learner made an error, the VLAN pane was hidden
automatically and the check list pane was displayed in its place.

3.3. Instructional support

Both variants of the system provided three types of instruc-
tional support: (a) AR-based worked-example instruction; (b)
check list-based worked-examples and (c) remediation (which
is provided using the AI techniques described previously). The
experimental condition included an additional instructional sup-
port type called fading, which is performed after each task is
successfully completed. It does not use the user model to adapt to
the user. The ITS primarily provides the remediation instruction.
The worked-example instructions are provided by the AR front-
end and do not depend on an ITS. The combination of checklist
and AR provide the examples needed to reduce working-memory
wastage resulting from randomised search processes [14]. They
aim to eliminate the unnecessary mental process of cross-
referencing the port labels identified in the VLAN table with the

physical port located in the switching rack.
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Fig. 5. Shows AR arrows over ports to be connected. One or more incorrect
orts are also shown at random to prevent the user from blinding following the
nstructions.

.3.1. AR-based worked-examples
The first type of instructional support is AR-based worked

xample instruction. Prior to plugging in the cable, the system
howed green arrows to indicate a series of recommended ports
o connect (Fig. 5). The arrows shown differed according to the
ode and task number in the experiment. For the control condi-

ion, the arrows shown did not vary across tasks.
This mechanism supports novices who lack an integrated

nowledge base to solve the problem without assistance [35,36].

.3.2. Check list worked-examples
The second type of instructional support is checklist-based

orked-example instruction. Prior to plugging in a cable, the
ystem showed the items that the user should check to ensure
hat a cabling connection is valid. When an error is made, another
heck list is displayed, showing the diagnostic steps that the user
hould follow to identify and fix the error. This mechanism helps
ovices acquire the appropriate knowledge (Fig. 1(a)).

.3.3. Remediation
The third type of instructional support is remediation, which

s personalised feedback provided during problem solving. It also
educes redundant mental activity that can impede learning by
roviding immediate feedback after a participant connects or
isconnects a cable [45]. Remediation relies on the AI techniques
rovided by the ITS.
Either the remediation will be positive (i.e. it will affirm that

he user has done it satisfactorily) or it will be negative (i.e. it
ill provide information that the user needs to know to fix the
roblem). For example, in the case of an incorrect cabling action,
irtual red arrows appear over each of the incorrect ports to
ndicate to the learner which port(s) should be disconnected.
fter plugging in or removing a cable, AR EtherGuide shows the
teps that the learner needs to follow to correct any outstanding
roblems, if any (Fig. 1(a)).

.3.4. Fading
The fourth type of instructional support is fading, which is

nly included in the experimental condition. AR EtherGuide per-
orms three types of fading: (a) worked-example fading, which
radually reduces the detail in the check list pane (Fig. 4(a)); (b)
R-based fading, which gradually reduces the amount of arrows
nd AR details displayed and finally (c) remediation fading which
emoves the feedback (Fig. 1(a)).

First, the check list pane transitioned from listing all items
n detail that need to be completed, to listing the steps briefly
nd finally, to removing all of the items. Second, the AR arrows
572
were shown for two ports that can be interconnected together.
Then, starting with the second task, only one arrow was shown,
so the second port would need to be resolved through problem
solving. For the third task, both arrows were removed and no
recommendations were given. Arrows were still shown if the
user made an error. For the fourth task, no arrows were shown
even when the user made an error but a tick and/or a cross
still appeared above the two ports. Third, remediation fading
transitioned from giving direct and explicit feedback, to simply
advising the user of the type of error made, to advising the user
that an error has been made and finally, to complete removal of
the feedback. After each task, the system presumed that sufficient
expertise was obtained.

3.4. Development

AR EtherGuide was developed using the Microsoft C# pro-
gramming language and .NET 4.7. The AR components were de-
veloped in Unity3D [90]. The ITS components were developed
using Visual Studio [91].

3.4.1. Augmented reality components
The AR front-end was developed using Unity3D 2018.1f gam-

ing engine (Unity) [90]. The models themselves were sourced
from the public domain and resized in an open-source modelling
suite called Blender [92] before being imported into Unity.

Tracking functionality was implemented using the Vuforia 8
AR tracking library [93]. An image marker with a stones pattern
was printed out and attached to the switching rack in a fixed
location. Pilot tests were undertaken to test the annotations for
occlusion and registration errors. An acceptable level of perfor-
mance was obtained after tweaking the software. We found that
registration errors were not noticeable on the tablet but were no-
ticeable on the PC during testing (as can be seen in Fig. 1(b)). We
used white frames to highlight surrounding ports to compensate
for potential misalignment.

3.4.2. Intelligent tutoring components
The ITS components were implemented as three separate

agents using C# .NET 4.7. Each agent was a .NET console instance
that shared the same local PC hardware resources. Each agent was
as follows:

• Assessment agent: The Assessment agent determined
which constraints were violated (or not). It performed the
domain modelling. It determined what kind of mistake the
user made (if any) and communicated with the Pedagogical
agent.

• Pedagogical agent: The Pedagogical agent managed what
feedback should be displayed. It then communicated with
the User agent to determine what type of feedback should
be displayed in the AR application. Based on this decision,
the Pedagogical agent updated the user model with in-
formation so that the user’s progress could be tracked in
real-time.

• User agent: The User agent stored information about the
user and their progress throughout each of the tasks.

• Core agent: The Core agent interconnected all of the agents
together and forwarded messages between the ITS agents
and the AR application.

• Dispatcher agent: The Dispatcher agent coordinated com-
munication between the Assessment, the Pedagogical and
the User agent. The dispatcher used Transmission Control
Protocol (TCP) to communicate with the Core agent, which
used a raw TCP socket to communicate with our AR appli-
cation.
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. Methodology

We performed a between-participant, randomised-controlled
xperiment comparing two variants of our AR EtherGuide ITS:
ne which operates in AR non-faded mode and one which op-
rates in AR faded mode. This was done to understand how
arying the instructions produces effects on cognitive load and
earning in a network cabling training environment. A total of
0 participants (10 self-reported females and 20 self-reported
ales) participated in the experiment. Half of the participants
ere assigned to the AR non-faded condition and the other half
ere assigned to the AR faded condition in a random manner.

.1. Participants

Participants were randomly assigned to one of the two AR
raining conditions (AR non-faded or AR faded) to control for
election bias and prior knowledge. We opted out of using diag-
ostic tests to avoid creating biased stereotype threat effects or
est anxiety [94]. Also, tests are only useful for evaluating known
actors [95]. In experimental studies where novel technology is
sed, it is not known what factors are relevant and which ones
re not. This makes random assignment more effective than prior
creening assignment [95].
The age range for the entire cohort was 25–40 years old (M =

0 years old, SD = 7.80). The average age range for the non-faded
control) group was 33 years old (SD = 8) and 27 years old (SD =

) for the faded (experimental) group (U = 61; p = .03; d = .85).
or each age range (e.g. 18–24), we calculated the median value
e.g. 21 years) and calculated the mean of each of these values to
et an approximate age mean.
Most participants reported prior educational experience,

hich allowed us to control for variability in learning skills as
uch as possible. They reported minimal or no cabling and VLAN
xperience using a 7-point Likert scale with 7 being very high
nowledge and 1 being very low knowledge (M = 1; SD = 1)
Appendix A). Their pre-training task knowledge score percent-
ges were captured at the start of the experiment (M = 37%;
D = 26) using a multiple choice exam (Appendix A) followed
y a practical assessment task. The average pre-training total
nowledge score for the non-faded (experimental) group was 36%
SD = 27) and 39% for the faded (experimental) group (SD =

1). These scores did not significantly differ, suggesting a prior
nowledge effect was not present (t = 0.27; p = .79). Finally,
uring the pre-training practical task, the system recorded each
abling error made by participants. The non-faded (control) group
ade 3 errors and the faded (experimental) group made 4 errors.
he differences were not significant and hence, effects were
nlikely due to group differences (t = 1.21; p = .24).
The mental demand scores were measured using the Na-

ional Aeronautics Space Administration Task Load Index (NASA-
LX) [96] both before and after the training task. The pre-training
ask scores were within average ranges [97] (M = 51; SD = 32).
his suggests that the task could benefit from instructional proce-
ures and it also suggests that the task was not too easy (i.e. the
ental demand was not below the average). The mean mental
emand scores between the two groups on the pre-assessment
ask were not significant (U = 107; p = .82). This suggests that
he learner’s knowledge prior to the intervention had no effect on
he mental demand.

.2. Experimental procedure

The experiment and the procedures used were approved by
ur institution’s human ethics group. A health and safety officer
hen approved the study. Fig. 6 shows the experimental process.
573
.2.1. Recruitment
Participants were recruited from a combination of under-

raduate/postgraduate university classes and from administration
ith a diploma to reduce variability in educational knowledge
nd expertise. Recruitment was done via an email circulated
ithin the computer science department of the university. Par-
icipants were paid a $10 Gift voucher for their participation.
otential participants contacted the researcher by email if they
ere interested.
A questionnaire was used to assess and manage Coronavirus

isease 2019 (COVID-19) risk by asking them a series of questions
bout their travel and if they had any respiratory symptoms such
s a running nose, cough, fever or sore throat within the last
4 days. High risk was determined if the potential participant
ndicated one or more symptoms or had travelled to a high risk
ocation. Those identified of being at high-risk were asked to fill-
ut the questionnaire 14 days later. If they continued to report
ymptoms and no cause for those symptoms were identified, they
ere excluded from the study (Fig. 6). Only one person reported
ymptoms, waited 14 days and reported symptoms again, so they
ere excluded from the study.

.2.2. Pre-experiment
Data was collected using a learner survey UI shown on the

ablet (Fig. 7) to avoid potentially spreading COVID-19 by touch-
ng the paper and transferring the virus to face, eyes or mouth.

Since the experiment was conducted during the COVID-19
andemic in 2020, participants sanitised their hands upon arrival
nd maintained at least 1.5 metres (6 ft) from the experimenter at
ll times. The experiment space was shared by a maximum of two
eople (a facilitator running the experiment and the participant).
Participants completed a demographics questionnaire that

sked them to provide their gender, their self-perceived experi-
nce with network cabling, VLAN concepts and prior experience
ith AR/VR technologies (Appendix A.1).
Participants then completed a multiple-choice knowledge test

Appendix A.2). The experimenter explained that the experiment
as not a test of intellectual ability, what each of the system’s
uttons did, what feedback to expect and to make sure that they
onnect all four cables into the rack. They were told that there
ere principles that had to be learned and that the tablet would
rovide the information needed to learn the principles assessed
y the multiple-choice knowledge test.

.2.3. Experimental tasks
The experimental tasks aimed to improve participants’ knowl-

dge, skills, transfer and internalisation of VLAN switching
oncepts in a series of similar network cabling tasks, which were
s follows:

• Both ports must be assigned to the same VLAN ID.
• Both ports must be of the same physical speed to maximise

efficiency.
• Both ports must reside on different physical switching de-

vices (bridging loops must be avoided).

In addition, learners should also learn:

• Appropriate terminology (e.g. a bridging-loop and how to
identify it).

• Port naming conventions (e.g. Fa0/1 means FastEthernet0/1)
• Port identification (e.g. knowledge of how to locate ports on

the rack).

Ports within the switching rack are mapped to a VLAN ID,
hich can be looked up in the table (Fig. 4(b)). Each port in
he rack is unique, so port Fa0/3 on S3 is not the same as port
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Fig. 6. Shows the flow through the phases in the experiment.
Fig. 7. The learner survey UI seen on the hand-held tablet screen.

Fa0/3 on S1. Each port could be mapped to a different VLAN ID.
Fa is an abbreviation for FastEthernet and corresponds with the
peed of the link. A single VLAN ID represents a group of ports. It
an have multiple ports mapped to it. Only ports mapped to the
ame VLAN ID can be interconnected together. The participants
ust learn these principles, which can be difficult because the
appings often produce errors under high load environments.
The participant began by attempting to complete a practical

etwork cabling without any learning assistance except for look-
ng up the VLAN table. Participants had 15 min to try and com-
lete the task. This step was necessary to measure the learner’s
aseline knowledge so that any subsequent knowledge gained
ould be compared. The participant had to interconnect five ca-
les between the switches in the rack.
Next, the participant performed four consecutive training

asks, which were not timed. The VLANs and the ports were
574
randomised to control for memorisation, to reduce observer bias,
to reduce potential confounding factors by using the same com-
bination of ports and VLANs and to provide a chance to adapt the
knowledge learned to slightly different port layouts.

After the fourth cabling task, participants in both conditions
once again repeated a 5-cable network cabling VLAN task without
AR or text-based guidance to see if their knowledge and skills
in the domain had improved. Participants were allowed up to
15 min to complete this task.

The independent variables were the two groups (AR non-
Faded v. AR faded). Each task was equal in difficulty and design
with the noteworthy exception of randomising which ports were
assigned to which VLAN. This was done to reduce subconscious
memorisation from the previous task and to prevent the ob-
server from potentially unconsciously communicating the answer
using non-verbal cues [98]. The differing port combinations re-
quired the participant to transfer their knowledge to the new
situation, which should be difficult if cognitive load impedes
learning [14,99]. Therefore, errors during this transfer step should
demonstrate a cognitive load effect on learning.

4.2.4. Post assessment
Finally, the participant completed another knowledge exam

with a 15-minute time limit. It was identical to the first exam
to reduce potential differences due to question interpretation.
Participants were not told their answers until after the study, so
it was not possible to remember the answers from the first test.

Participants were informally asked questions about the system
such as: Overall, what were your impressions of using our system
today?’ or ’What were some weaknesses with using the system?’.
This allowed the researcher to ask follow-up questions to clarify
their initial responses.
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.3. Research tools

The following research tools were used:

.3.1. Galaxy Tab S5e Wi-Fi 64GB
Our research used a Galaxy Tab S5e Wi-Fi 64GB tablet with a

0.5 inch screen to provide sufficient screen space to display the
ontent.
Our rationale for using a tablet instead of a head-worn AR

evice, such as the Microsoft HoloLens, were as follows. First,
revious work [56] found that they can impose a higher cognitive
oad in AR tasks. Second, unfamiliarity with using a head-worn
R device may bias the results due to a novelty effect. Third, it
ay create an unplanned tertiary task that imposes a cognitive

oad by splitting working memory resources between figuring out
ow to operate a head-worn AR device and the learning task.
inally, hand held tablets or phones are widespread and likely
o be adopted as an industry choice. Their cost effectiveness and
ase of use due to familiarity makes them suitable for industry
nd educational use [21]. We reduced potential split attention
ffects resulting from perceived mismatches by using spoken
udio [38,89].

.3.2. Networking equipment
The network switches used in this experiment were three

isco Catalyst 2950 switches and one Cisco Catalyst 2960 switch.
ifferent models of switches were used to create variety in the
raining scenario so that learners could learn skills across both
odels. All switches were reset to their default (factory) settings
nd no further configuration of the switches was done.
The switches were interconnected via a serial (console) con-

ection to an OpenGear Infrastructure Manager 4216 console
erver appliance [100]. This appliance reads console messages
n real-time and is used to detect when cables are plugged
r unplugged. This appliance connects with our system over
elnet to provide real-time response to cabling connections. Up
o 24 switches can be interconnected via this appliance. In our
xperiment, four switches were used.
A Cisco Aironet LWAPP (AIR-LAP1252AG-N-K9) wireless ac-

ess point was used to provide wireless network connectivity
etween our hand held tablet and the backend infrastructure. The
ccess point used the 802.11N standard for communication.

.3.3. Desktop computer
An Intel i7 desktop gaming computer with an Nvidia GTX 950

eries graphics card, two 256 gigabyte solid state drives (SSDs),
n Intel i7-6700 processor and 16 GB of system memory was
sed to run the backend components. The computer was inter-
onnected with the networking equipment via an unmanaged
etGear switch.

.3.4. Data collection equipment
Data collection was performed by the OpenGear appliance

hich recorded when cables were plugged or unplugged. This
nformation was then provided to our backend system running
n the gaming computer, which logged this information. Sur-
ey information was collected electronically using the survey
uestionnaire in the tablet. This UI was developed and inte-
rated into our Unity application so that the user did not have
o manually switch to a different system. Time and errors were
ecorded automatically by the system and did not require manual

ntervention.

575
4.4. Experimental measures

We evaluated the effectiveness of AR EtherGuide using a series
of measures including: (1) user perceptions (i.e. NASA-TLX [96];
learning experience surveys (Appendix A) and asking participants
about their learning); (2) knowledge acquisition (i.e. knowledge
scores of the exam (Appendix A)) and (3) performance measures
(i.e. error count and task completion time in seconds). Measuring
knowledge acquisition follows from the information store princi-
ple and cognitive load. Higher errors and less knowledge indicates
higher cognitive load in a CLT framework [14].

4.4.1. NASA-TLX
The NASA-TLX was used to measure subjective task load dur-

ing the task [101,102]. The instrument sub-scales allowed us
to isolate physical exertion from mental effort caused by high
cognitive load, so was more suitable over other workload instru-
ments [103,104].

4.4.2. Problem-solving dual-task
Problem solving was added as a secondary task to intention-

ally impose a load on working memory. So, if performance in
the secondary (problem-solving) task diminishes, then it demon-
strates a cognitive load effect [102]. For example, reduced perfor-
mance is measured by counting the errors made. In the network
cabling tasks, users use mental resources to mentally search for
the correct port and map it to VLANs. Users must also diag-
nose any invalid connections that they may make. Any errors in
these processes would indicate reduced problem-solving capabil-
ity. These errors would worsen if a cognitive load effect, such as
an expertise-reversal effect, was present.

4.4.3. Knowledge retention
Knowledge retention was measured using a multiple-choice

knowledge exam (Appendix A) before and after the experiment
task to compare how much the knowledge had changed. Higher
knowledge scores indicate that the instruction imparted some
knowledge since other sources of knowledge were eliminated. If
differences between groups were detected, it should show that
the imparting of that knowledge was impeded. Therefore, we
would expect to see a difference between groups if there was a
cognitive load effect present.

Each question of the pre-knowledge and post-knowledge ex-
ams were assigned to two categories: (i) total knowledge and (ii)
domain, application, comprehension or metacognition. For exam-
ple, a correct answer worth 4 points of a question assigned to the
metacognition category would result in a metacognitive score of
4. All the questions in each category were summed to produce a
total value for each category and an overall knowledge score.

4.4.4. Emotional regulation dual-task
Emotional regulation has often been considered an extraneous

dual task in cognitive load studies (see Plass and Kalyuga [80]
for a review). So, if a cognitive load effect was present, then
we should also expect to see reduced capacity for users to self-
regulate their emotions in the learning task. Self-regulatory skill
involves the use of certain thoughts to maintain self-control when
the primal emotions are triggered.

We observed the participants’ behaviour for indications of im-
peded emotional regulation and also asked them to comment on
the learning experience. The latter was free-flowing so that po-
tential emotional responses could be identified using a qualitative

approach.
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.5. Data analyses

The following types of analyses on the data were performed.
The knowledge dimensions, completion seconds and error

ount data were intervals, so were tested for normality using a
olmogorov–Smirnov test (α = 0.05). We assumed normality
f a was greater than 0.05. For normally-distributed data, we
erformed a parametric student t-test for dependent means be-
ween the pre-assessment and post-assessment scores for each
ategory (α = 0.05). For normally distributed inter-group data,
e performed a parametric student t-test for independent means

α = 0.05).
For the data, which was not normally distributed (e.g. ratio

ata), we performed a pairwise comparison between the pre-
ssessment and post-assessment tasks using a non-parametric
ilcoxon Signed Rank test (α = 0.05). For non-normal er-

or count data between groups, we performed a non-parametric
ann Whitney-U test (α = 0.05). We analysed the NASA-TLX
ata by decoupling each individual dimension to provide diag-
ostic information on which dimensions were being shaped by
he condition. However, due to a recording error, only the perfor-
ance and mental demand sub-scales of the NASA-TLX were us-
ble. Inter-group analysis was performed using a non-parametric
ann Whitney-U test (α = 0.05).

.6. Hypotheses

We made the following hypotheses based on the AR instruc-
ional principles and effects derived from the literature in
ection 2.

1. H1: the mental demand score of the post NASA-TLX will
be greater in the AR non-faded (control) group: The AR
non-faded (control) group is predicted to have a higher
mental demand score on the post NASA-TLX because of
higher cognitive load resulting from the AR Novice effect.
The problem-solving task will subjectively feel harder to
accomplish because of reduced cognitive resources being
available.

2. H2: the AR non-faded (control) group will commit more
errors than the faded (experimental) group: As cogni-
tive load increases, the ability to carry out the secondary
(problem-solving) task will diminish. Therefore, the par-
ticipants in the AR non-faded (control) group will commit
more errors due to the AR conditioning effect.

3. H3: Knowledge retention of the AR faded group will
be greater than the AR non-faded group: We predict
that due to the CLT expertise-reversal effect [39], learners
in the AR faded (experimental) group will show greater
knowledge retention and acquisition compared to the AR
non-faded (control) group.

4. H4: Self-Regulatory ability will be impaired in the AR
non-faded (control) group: The AR non-faded (control)
group will exhibit behaviours that indicate poor self-
regulatory ability and will not be able to suppress primal
emotional responses.

.7. Research questions

This study investigated the following research questions:

1. RQ1What are the instructional implications of an AR-based
ITS in a network cabling task?

• RQ1.1 Does adding a fading mechanism to an AR-
based ITS improve knowledge acquisition and recall?
576
Table 1
Comprehension scores.
Item AR non-faded AR faded

Baseline comprehension score 36% 36%
Post comprehension score 58% 64%
Comprehension score gain +22% +28%

Baseline SD 29 26
Post SD 27 28
Gain SD 9 38
Baseline/Post p .02* .01*
Baseline/Post t 2.74 2.79
Gain p .65
Gain t −0.46

*Significant result (p < 0.05).

Table 2
Uncorrected error counts.
Item AR non-faded AR faded

Baseline errors 2 3
Post errors 1 1
Error reduction gain 1 2

Baseline SD 1.74 2.02
Post SD 1.78 1.31
Gain SD 1.33 2.10
Baseline/Post p .04* < .01*
Baseline/Post t −2.26 −3.91
Gain p .04*
Gain t 2.11

*Significant result (p < 0.05).

• RQ1.2 Does adding a fading mechanism to an AR-
based ITS reduce unconscious errors performed in a
network cabling VLAN learning task?

• RQ1.3 Is there an interaction between worked-
example, problem-solving, AR and fading?

2. RQ2 What cognitive mechanisms do users use when
problem-solving network cabling tasks?

• RQ2.1 What self-regulatory mechanisms do users use
in a network cabling task?

• RQ2.2 What unconscious cognitive mechanisms are
employed in a network cabling task?

5. Results

5.1. Knowledge acquisition

The average domain knowledge gain score for the AR non-
faded (control) condition (M = 7%; SD = 25) did not significantly
differ from the AR Faded (experimental) condition (M = 9%; SD
= 33), t(28) = −0.2; p = .84. Table D.4 provides more detail.

Both conditions facilitated knowledge comprehension,
MAR non-faded gain = 22%; SDAR non-faded gain = 9) and MAR faded gain
= 28%; SDAR faded gain = 38). Table 1 provides more detail.

Application knowledge did not differ between the baseline and
post-assessment measures or between the conditions. Table D.5
summarises the findings.

5.2. Performance

Table 2 shows the amount of uncorrected errors that were
recorded by the system during the tasks (Fig. 8).
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Fig. 8. (Uncorrected) error reduction count between the two post assessments.

.3. User perceptions

.3.1. Interview and observations
H4 was not supported because there were no definitive in-

icators of limited self-regulatory abilities. Nevertheless, eight
articipants reported that they found the system’s AR cues to be
seful but that they would become too reliant on using them. One
f these participants also gave feedback that they were not giving
heir full attention because they perceived that AR was telling
hem what to do.

Two participants also reported that they felt confident in the
R Faded (experimental) condition when answering the exam
cores on the post-assessment questionnaire. This seems con-
istent with similar reports of a confident perception that they
ad improved their skills using the system. For instance, one
articipant described their experience as knowing nothing before
hey did the experiment but felt that they understood the basic
oncepts. Conversely, AR non-faded (control) participants did not
eem to express such feelings.
During the training task(s), there were observations of users

rying random things. Sometimes, learners felt that two options
ould be true and were able to eliminate the incorrect option as
result of getting feedback from the system. This enabled im-
rovement on subsequent attempts. However, each subsequent
ask was a transfer task with different VLAN combinations. These
ombinations sometimes revealed misconceptions. For example,
n the first task, users did not realise that the switch ID and port
D differed.

.3.2. Learner experience survey findings
The results from the learner experience survey

Appendix A.3.1) were not significantly different between tasks or
roups. The results from the learner experience survey produced
n overall score of the learner’s metacognition (knowledge about
ffective learning strategies). Table 3 summarises the findings.

. Discussion

Users were found to have committed more errors in the non-
ading (control) group. There was no indication that the mental
emand, knowledge retention or self-regulatory abilities differed
H1, H3 and H4 not supported). The lack of support for H1,
3 and H4 were surprising given the cognitive load effect in
he AR non-faded (control) group. One explanation might be a
imitation with the measurement tools used (e.g. the measured
ognitive load fluctuated and was not captured by the NASA-
577
Table 3
Metacognitive scores.
Item AR non-faded AR faded

Baseline metacognitive score 39% 42%
Post metacognitive score 36% 36%
Metacognitive score gain −3% −6%

Baseline SD 21 22
Post SD 23 20
Gain SD 23 28
Baseline/Post p .60 .44
Baseline/Post t −0.54 −0.79
Gain p .80
Gain t 0.26

* Significant result (p < 0.05).

TLX (mental demand) score [105]). Another explanation is that
the fading mechanism is intended to facilitate skill development
and automation of the knowledge. Experts already have the base
knowledge but their performance declines when such knowledge
becomes redundant. It is also plausible that our system lacked
an appropriate mechanism to facilitate sound knowledge acquisi-
tion. Finally, H4 has some support but it is insufficient to conclude
that it is supported.

6.1. Instructional implications (RQ1)

This experiment provides several instructional implications
as predicted by CLT. We found evidence of a worked-example
effect; an AR novice effect and finally, an AR conditioning effect.
Therefore, as discussed below, user expertise has implications on
the design of instruction.

6.1.1. AR transfer principle
The AR transfer principle likely played a key role in the com-

prehension score increases across both groups (Table 1). AR cues
seemed to help the users initially, since they were observed
reacting to the AR cues even when they appeared to have limited
or no knowledge of the domain. They followed the AR cues in the
first instance.

An effect on knowledge recall was not reflected in the post-
knowledge exam scores (RQ1.1). Nevertheless, we observed
reduced reliance on random problem-solving processes. For ex-
ample, learners were observed gradually changing their learning
strategies. This suggests that knowledge was present in long-term
memory that was not there at the start of the experiment [34]
(RQ1.1). If so, they must have acquired the knowledge during
the experiment. Therefore, there is some support for H3 but the
effect needs to be stronger for one group before claiming that it
is supported.

Unlike some prior works (e.g. Thees et al. [71]) which found
limited evidence of knowledge differences between pre/post con-
ditions, we found knowledge gains in the comprehension area.
Usually, ITSs are not very effective for facilitating this kind of
knowledge transfer [44,45]. Despite this, our system improved
this knowledge. This was likely due to the worked-example effect
used across the two groups. It explains why the gain scores did
not differ between the groups as predicted by H3. Future work
would be required to isolate worked-example instruction from
an AR-based ITS to confirm this working hypothesis.
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.1.2. AR interpretation principle
The AR interpretation principle explains the lack of support

or H3 (knowledge acquisition) differences between groups. Hu-
ans can interpret their environment effortlessly because they
ave evolved to do it automatically [32]. Therefore, knowledge
ransferred through AR, would be effortless to process, especially
hen it comes to intuitive conceptualisation of the port mapping

n 3D space. AR likely reduces the extent to which cognitive
oad interferes with knowledge acquisition. This is based on the
nowledge gains recorded in both groups. Once again, future
tudies are needed to confirm this working hypothesis but there
re theoretical explanations in the literature (e.g. Geary and Berch
32]).

.1.3. AR conditioning effect
The first type of expertise-redundancy effect was the AR con-

itioning effect. As users’ learning progressed, eight participants
tarted to ignore the AR cues. One participant was observed trying
different (non-highlighted) port just to see what happened.
thers reported that they felt that the AR cues would create
egative behavioural patterns of becoming overly reliant on the
ystem and fail to learn how to do it without help. These beliefs
ikely stemmed from the AR conditioning effect and explains the
ttention lapses and errors recorded by participants in the non-
aded (control) group. This supported H2. The attention lapses
lso provided some support for H4 but it is too weak to claim
hat it is supported.

.1.4. AR novice effect
The second type of expertise-redundancy effect was the AR

ovice effect, which suggests that worked-examples and guid-
nce provided by an ITS reduces with growing expertise. For
xample, as reliance on external aids reduced and more practice
as needed, we would expect to see errors increase (or fail to
ecrease) [49]. Our results support this view (RQ1.2). H2 was
upported.
Therefore, adding a fading mechanism can help reduce (un-

onscious) errors performed by users (RQ1.2). This suggests that
he worked-example instructional effectiveness can diminish as
kills are developed as per our predictions from the AR novice and
LT expertise-reversal effects [39]. As problem-solving tasks com-
ete for cognitive resources, the ability to effortlessly carry out
he problem-solving task diminishes. This explains why greater
rrors were seen in the non-faded (control) group. This supports
2 and the theoretical explanations of CLT [12].

.2. Cognitive mechanisms (RQ2)

An interaction effect between biologically-primary cognitive
echanisms and biologically-secondary mechanisms may explain
hy some users did not feel overwhelmed by the novel informa-
ion (RQ1.3). We identified the following three potential cognitive
echanisms used in our experiment.

.2.1. Suppression of Irrelevant behaviour (RQ2.1)
Users were observed trying random processes at first but

radually changed their behaviour in response to cues from the
nvironment. Two participants were observed plugging in a ca-
le, stopping themselves and making a correction before pro-
eeding to connect the cable. This shows that there was some
se of self-regulatory abilities by users in the task. H4 was not
upported.
One participant failed to suppress irrelevant behaviour, ver-

ally commenting about having no idea what they were doing.
ne other participant plugged in cables by memorising the pre-
578
vious solution and failing to notice that their solution from the
previous task was not generalisable to this task. This shows
errors in transfer. However, since the effect was not isolated to
a particular group, this finding does not support H4.

6.2.2. Suppression of cognitive load awareness (RQ2.1)
Participants seemed to employ self-regulation mechanisms to

suppress awareness of cognitive load to avoid fatigue. This may
explain why the NASA-TLX findings were not significant in self-
reports (H1 not supported). As a result, the participants may not
be self-aware of the complex interactions to be able to describe
it accurately in an introspective report [102].

6.2.3. Suppression of relevant behaviour (RQ2.1)
Suppression of relevant behaviour occurs when appropriate

and expected behaviour does not occur because self-regulatory
mechanisms are used to suppress it. For example, one participant
failed to notice that their behaviour was not producing desired
outcomes (i.e. repeatedly pressing the repeat message button).

Learned metacognitive skills govern when to select these pre-
existing skills versus learning new skills. Skills can be internalised
and used inappropriately due to conditioning [106].

6.2.4. Unconscious automation mechanisms (RQ2.2)
There was evidence of impaired unconscious automated

mechanisms, which suggests that cognitive load may have inter-
fered with schema automation. Both groups were able to acquire
the knowledge initially because of the worked-example and AR
effects. Practice does not aim to facilitate knowledge acquisition
but schema automation. Cognitive load effects at this point would
not impede the knowledge since it was already acquired. Rather,
it would impede the ability to practice the skills. This may explain
why H3 was not supported.

Another theoretical explanation for the lack of support for H3
might be because, according to Cooper and Sweller [14], increased
errors in the AR non-faded group, can indicate limited ability to
transfer knowledge due to high cognitive load. Even though the
knowledge was known, it was not transformed into a higher form
of knowledge that would be required for the kind of diagnostic
work carried out on network equipment. Conversely, if transfer
skills were present, the errors should be less because the learner
would be able to adapt what they have learned so far to the new
task [14].

6.3. Limitations

We identified the following limitations and assumptions with
our experiment, which can help frame the basis for future work.

6.3.1. Multifaceted nature of learning
The first limitation is the multifaceted nature of learning [107].

It has been known for over two decades that learning involves
an interaction between cognitive and affective elements within
the learner. This interaction can influence learning outcomes. For
example, one limitation of CLT as a model is that it does not
integrate learner emotional factors [80]. It is not necessarily easy
to determine how these dimensions interact with one another.
For example, perceptions of an environment can influence where
one directs their attention, which could also account for attention
lapses [108]. However, a recent study found that working mem-
ory and not subjective factors like task repetition, accounted for

attention lapses [79].
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In our experiment, it would be ideal to completely isolate all
he potential factors that could influence learning whether they
e usability limitations, subjective factors like emotional states or
rior knowledge and experience. Further, we could have designed
system that focused just on the AR/ITS components. However,
uch a system is likely to be impossible to design because there
re always going to be factors that interact with each other.
his limitation arises because a training system comprises of a
ollection of components that are difficult to decouple.

.3.2. Other theories
Our theoretical basis was grounded in Geary and Berch [32]

nd Sweller [27] evolutionary cognitive theories (i.e. cognitive
oad). However, there are other theories that could explain the
ncrease in errors performed by users. For example, if AR was
nusable due to registration errors, then removing AR would
esult in greater performance. These assumptions could also be
xplained under a cognitive load model. As working memory
apacities reduce due to use, the ability to process and correct
or misaligned AR cues would diminish, reducing working mem-
ry space even further. The AR Bias effect would explain this
nterpretation and is compatible with the guidance fading effects.
erhaps, more importantly, is that we would also expect to see
egradation (or differences) in knowledge retention because the
isalignment would interfere with the worked-example effect

see Chandler and Sweller [37],Ward and Sweller [109]). Yet, no
uch effect was found in our study.
Theories of flow and motivation could have also played a key

ole in whether someone regulated their attention and invested
ognitive resources needed to solve the problem [110]. For ex-
mple, task monotony and attention failures could be explained
sing flow theory. Our study did not decouple motivation from
ognitive load effects.
Head and Helton [79] found that high cognitive load rather

han boredom accounted for the errors in task environments.
imilarly, the regulation of flow is governed by sense of presence.
t is possible that presence was modified by AR and this led
o deeper immersion in the task. These mechanisms are best
xplained by our unconscious cognitive mechanisms and are
xamples of the AR unconscious-stimulation effect.
These potential factors should not be conceived as alternate

xplanations for the effects observed in this experiment. Rather,
hey should be interpreted as supplementing the experimental
indings. For example, it is possible that both motivation and
xpertise effects were present. Fading mechanisms could not only
mprove knowledge retention as per predictions made by CLT, but
ould also remove other factors such as redundant stimuli that
nterferes with performance. These explanations would provide
eight for a new multifaceted learning framework in which
ognitive load is but one dimension.

.3.3. Limitations of the cognitive load model
CLT explains the effects observed in our experiment. Nev-

rtheless, CLT is not a ‘‘theory of everything" [111]. It is not
ntended to apply to non-educational contexts [112]. In some
omains which focus more on skill development, the theoretical
xplanations of CLT may not be useful for explaining how these
kills are developed. In networking cabling, we made the as-
umption that instructional procedures were important because
sers must build up a knowledge base in long-term memory. CLT
perates under these assumptions. Other factors outside of CLT
ere identified such as implicit learning [113], behaviour [106]

nd motivation [110].

579
6.3.4. Usability
The experiment did not use the System Usability Scale (SUS)

[114] to measure UI usability. This meant that we could not
isolate the usability from instructional design. For example, we
could have correlated usability with performance and cognitive
load. Since we did not measure the usability using the SUS,
we cannot compare the design with similar UIs. The deciding
factor for not using the SUS was based on a belief that too
many questionnaires could bias the results due to a spacing
effect [115].

6.3.5. Medical conditions
Our experiment did not screen for medical conditions (other

than COVID-19). Even though we found no significant differences
between groups, it could have been the case that if a difference
was detected, it may have been due to an undetected medical
condition. For example, colour blindness may have reduced the
ability to differentiate between the arrows. Perhaps, one of the
limitations is that even if we had screened participants, there
would have been no guarantee that all possible medical condi-
tions would be found. Further, screening is only useful insofar for
detecting known medical conditions [95].

6.3.6. Measurement errors
During the study, four of the six NASA-TLX dimensions had to

be discarded because the wrong data was recorded due to a soft-
ware bug. This suggests important lessons of using paper when
appropriate to record the results. Nevertheless, the limited NASA-
TLX data does not harm the ideas presented in this paper because
we draw conclusions based on their learning and performance,
which was the aim of the paper rather than measuring cognitive
load directly.

7. Conclusion and future work

From the literature, it was postulated that adding a guidance-
fading mechanism to an AR-based ITS should improve its ef-
fectiveness as per predictions made by the CLT guidance-fading
effect [49]. We implemented such an AR training system in the
network cabling domain and tested the effectiveness of it by
comparing it to an identical system without fading. Our experi-
ment showed that, although adding a fading mechanism reduced
errors, it had a limited effect on knowledge acquisition. Future
work should explore the effectiveness of the worked-example
instruction in novices to understand how it can better transfer
knowledge.

Whereas, AR-based ITS have been shown to improve knowl-
edge retention up to 25% in novices [18], experts benefit more
from an AR-based training system without an ITS. Furthermore,
both the AR detail and the amount of remediation steps should
be reduced as expertise increases. Novices move along a contin-
uum to gradually become experts [34]. Therefore, novices quickly
become experts, so AR and ITS should adapt to the changing ex-
pertise. Without these considerations, an AR novice effect and AR
conditioning effect is likely to result, reducing problem-solving
performance and potentially interfering with learning.

This paper provided support for the AR Novice effect, which
suggests, that the effectiveness of an ITS reduces in AR envi-
ronments with increasing expertise; the AR conditioning effect,
which suggests, that AR results in inattention for experts causing
errors and finally, evidence for the AR integration principle, which
suggests that AR likely facilitated knowledge acquisition but more
work is needed to validate the repeatability and generality of this
finding. Users reported increased reliance and perceived distrac-
tion by AR as they gained experience, further supporting an AR
conditioning effect in the network cabling domain.
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There were several other AR confounding effects derived in
ection 2. These include: the AR unconscious-stimulation effect,
he AR bias effect and the AR problem-solving effect. The AR
cceleration effect was derived out of the empirical findings of
his study to explain how limited training could account for the
xpertise increase. Future work should explore the robustness of
hese effects. For example, an experiment might explore reversing
he fading by starting without AR and progressively adding it to
ee if a AR bias effect results.
The first next step should be to decouple worked-example

nstruction from an AR-based ITS to demonstrate that worked-
xample instruction can provide knowledge transfer whereas
ithout it, transfer will be limited. AR-based ITS experiments so

ar have lacked a comparison between worked-example versus
o worked-example. Yet, the effects discovered in our experiment
otivate the need for such an experiment.
The second next step is the incorporation of adaptive fading

upport into the ITS itself [49]. This has been done in non-AR
omains but not in ITSs that use AR. It is possible that the
nstruction was faded out too soon, causing some participants
o become easily confused. This motivates the next study to
ocus on adaptive fading. For example, using predictive models to
ategorise learners into novice and expert groups based on this
oreknowledge. There is some work in VR training systems, but
o such work in AR training domains [116].
The third next step is to optimise the UI to ensure consistent

esults across future experiments. In our experiment, the UI itself
as novel because it was based on CLT principles. There was no
ata to which to base our UI design for network cabling. The
ext experiments could do various comparisons of similar UIs to
nderstand which part(s) need to be optimised.
580
Finally, this work is of interest to AR educational researchers,
uman-Computer Interaction (HCI) researchers, AIED researchers
nd educators looking to understand how hands-on domains can
e affected by the use of the same technology but which uses
ifferent instructional methods.
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ppendix A. Administered questionnaires

These questionnaires were administered after each phase
continued next page).



B. Herbert, G. Wigley, B. Ens et al. Computers & Graphics 102 (2022) 566–591

A
.1. Demographics
581



B. Herbert, G. Wigley, B. Ens et al. Computers & Graphics 102 (2022) 566–591

A
.2. Exam
582



B. Herbert, G. Wigley, B. Ens et al. Computers & Graphics 102 (2022) 566–591
583



B. Herbert, G. Wigley, B. Ens et al. Computers & Graphics 102 (2022) 566–591

A

A

.3. Subjective measures

.3.1. Learner experience survey
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Appendix B. EtherGuide Example domain model

<KnowledgeModel>
<String name="name" default="" value="Unknown" Constraint="IsNotValue" />
<Int name="vid0" default="0" value="0" Constraint="GreaterThan"
tag="InvalidVlanID" />
<Int name="vid1" default="0" value="vid0" Constraint="IsValue"
tag="vid1" />
<String name="switch0" default="" value="S" Constraint="IsNotValue"
tag="InvalidSwitch" />
<String name="switch1" default="switch" value="switch0"
Constraint="IsNotValue" tag="switch" />
<Int name="speed0" default="0" value="0" Constraint="GreaterThan"
tag="InvalidSpeed" />
<Int name="speed1" default="10" value="speed0" Constraint="IsValue"
tag="speed" />

...
</KnowledgeModel>
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Table D.4
Domain scores.
Item AR non-faded AR faded

Baseline knowledge score 29% 27%
Post knowledge 36% 38%
Domain knowledge gain +7% +9%

Baseline SD 21 27
Post SD 31 34
Gain SD 25 33
Baseline/Post p .51 .36
Baseline/Post t −0.67
Gain p .84
Gain t −0.2

* Significant result (p < 0.05).

Table D.5
Application of knowledge.
Item AR non-faded AR faded

Baseline application score 40% 50%
Post application score 46% 30%
Application score gain +7% −20%

Baseline SD 45 41
Post SD 43 36
Gain SD 17 36
Baseline/Post p .157 .058
Baseline/Post T −1.41 3.5
Baseline/Post Z −1.41 −190
Gain p .09
Gain z 1.68

* Significant result (p < 0.05).

ppendix C. Pedagogical example models

Some example XML structures, which could model pedagogical characteristics.

PedagogicalModel>
<Pedagogy type="Standard">

<PedagogyName>Standard</PedagogyName>
<PedagogyGroup>Standard</PedagogyGroup>
<VisualizeCorrectActionInitially>

False
</VisualizeCorrectActionInitially>
<VisualizeCorrectActionOnError>

True
</VisualizeCorrectActionOnError>

</Pedagogy>
/PedagogicalModel>

ppendix D. Additional results

Some additional results are reported.

.1. Knowledge acquisition

See Table D.4.

.2. Performance measures

See Fig. D.9 and Tables D.5–D.8.
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Fig. D.9. Shows the Error Differences between the two conditions. Both the baseline and post assessment for each condition is shown.

Table D.6
Completion times.
Item AR non-faded AR faded

Baseline completion seconds 331 384
Post completion seconds 216 175
Completion seconds gain −115 −209

Baseline SD 100 143
Post SD 159 53
Gain SD 182 136
Baseline/Post p .03* < .01*
Baseline/Post t −2.37 −5.73
Gain p .15
Gain t 1.51

*Significant result (p < 0.05).
Decreased time would be preferred.

Table D.7
NASA TLX performance scores.
Item AR non-faded AR faded

Baseline performance 36 23
Post performance 61 65
Performance gain 25 41

Baseline SD 33 32
Post SD 35 27
Gain SD 31 33
Baseline/Post p .02* p < .01
Baseline/Post T 79.5 120
Gain p .15
Gain z 1.45

*Significant result (p < 0.05).

Table D.8
NASA TLX mental demand scores.
Item AR non-faded AR faded

Baseline mental demand 51 55
Post mental demand 46 50
Mental demand gain −4 −5

Baseline SD 33 28
Post SD 19 23
Gain SD 43 22
Baseline/Post p .73 .40
Baseline/Post Z −0.34 −0.84
Baseline/Post T 54 33.5
Gain p .95
Gain Z −0.06

* Significant result (p < 0.05).
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